Решим первое неравенство как квадратное уравнение:
-х²+х+6=0/-1
х²-х-6=0
х₁,₂=(1±√1+24)/2
х₁,₂=(1±√25)/2
х₁,₂=(1±5)/2
х₁= -4/2
х₁= -2
х₂=6/2
х₂=3
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -2 и х=3. По графику ясно видно, что у<=0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале х∈ (-∞, -2]∪[3, +∞).
Значения х= -2 и х=3 входят в число решений неравенства, скобка квадратная.
Это решение первого неравенства.
Решим второе неравенство.
5-3(x+1)>x
5-3х-3>x
-3x-x> -2
-4x> -2
x< -2/-4 знак меняется
x<0,5
х∈ (-∞, 0,5) - решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа -2, 0,5, 3.
Штриховка от -2 до - бесконечности, от 0,5 до - бесконечности, от 3 до + бесконечности.
Пересечение от -2 до - бесконечности.
Решения системы неравенства находятся в интервале х∈ (-∞, -2].
"Меня в книгах Анатолия Алексина привлекает то, что автор этих в общем-то незатейливых произведений по-настоящему добрый человек, то, что рассказы и повести "Мой брат играет на кларнете", "А тем временем где-то", "Раздел имущества", "Безумная Евдокия", "В тылу как в тылу" и другие вовсе не утратили своего значения. И не могут утратить: они не только и не столько о времени, они о вечных проблемах взросления и становления человеческой личности, о нравственном выборе, от которого зависит, будешь ли ты сам себя уважать, не говоря уже о других.
А ещё я люблю этого автора за афористичность, за умение его в одной фразе сконцентрировать суть истины, которую порой трудно объяснить доходчиво:
Человек непонятлив, когда речь идет о том, на что ему наплевать.
Чтобы уйти от человека, надо иногда придумывать ложные причины. Потому что истинные бывают слишком жестоки. Но чтобы ПРИЙТИ, ничего не нужно придумывать. Надо просто прийти, и все.
Беспечное счастье выглядит жестоким и наглым, потому что еще далеко не все люди на свете счастливы.
И что бы там ни говорили, если я плачу над повестью "В тылу как в тылу" , долго размышляю о "Позднем ребёнке", перечитываю "Безумную Евдокию"... значит для меня это хорошие книги и хороший писатель".
х∈ (-∞, -2].
Объяснение:
Решить систему неравенств:
-х²+х+6<=0
5-3(x+1)>x
Решим первое неравенство как квадратное уравнение:
-х²+х+6=0/-1
х²-х-6=0
х₁,₂=(1±√1+24)/2
х₁,₂=(1±√25)/2
х₁,₂=(1±5)/2
х₁= -4/2
х₁= -2
х₂=6/2
х₂=3
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -2 и х=3. По графику ясно видно, что у<=0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале х∈ (-∞, -2]∪[3, +∞).
Значения х= -2 и х=3 входят в число решений неравенства, скобка квадратная.
Это решение первого неравенства.
Решим второе неравенство.
5-3(x+1)>x
5-3х-3>x
-3x-x> -2
-4x> -2
x< -2/-4 знак меняется
x<0,5
х∈ (-∞, 0,5) - решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа -2, 0,5, 3.
Штриховка от -2 до - бесконечности, от 0,5 до - бесконечности, от 3 до + бесконечности.
Пересечение от -2 до - бесконечности.
Решения системы неравенства находятся в интервале х∈ (-∞, -2].
А ещё я люблю этого автора за афористичность, за умение его в одной фразе сконцентрировать суть истины, которую порой трудно объяснить доходчиво:
Человек непонятлив, когда речь идет о том, на что ему наплевать.
Чтобы уйти от человека, надо иногда придумывать ложные причины. Потому что истинные бывают слишком жестоки. Но чтобы ПРИЙТИ, ничего не нужно придумывать. Надо просто прийти, и все.
Беспечное счастье выглядит жестоким и наглым, потому что еще далеко не все люди на свете счастливы.
И что бы там ни говорили, если я плачу над повестью "В тылу как в тылу" , долго размышляю о "Позднем ребёнке", перечитываю "Безумную Евдокию"... значит для меня это хорошие книги и хороший писатель".