Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 16 см² больше площади другого. Найдите периметр прямоугольника, если известно, что длина прямоугольника на 2 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 2
у² - х² = 16
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
В решении.
Объяснение:
4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 16 см² больше площади другого. Найдите периметр прямоугольника, если известно, что длина прямоугольника на 2 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 2
у² - х² = 16
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
(х + 2)² - х² = 16
х² + 4х + 4 - х² = 16
4х = 16 - 4
4х = 12
х = 12/4
х = 3 (см) - ширина прямоугольника.
3 + 2 = 5 (см) - длина прямоугольника.
Проверка:
5² - 3² = 25 - 9 = 16 (см²), верно.
2) Найти периметр прямоугольника:
Р = 2(х + у) = 2(3 + 5) =16 (см).