Направление: направлено вниз
Вершина:
(
0
,
4
)
Фокус:
15
.
Ось симметрии:
x
=
Направляющая:
y
17
Выберем несколько значений
и подставим их в уравнение, чтобы найти соответствующие значения
. Значения
должны выбираться близко к вершине.
Нажмите, чтобы увидеть больше шагов...
−
2
1
3
Построим график параболы, используя ее свойства и выбранные точки.
Объяснение:
Направление: направлено вниз
Вершина:
(
0
,
4
)
Фокус:
(
0
,
15
4
)
.
Ось симметрии:
x
=
0
Направляющая:
y
=
17
4
Выберем несколько значений
x
и подставим их в уравнение, чтобы найти соответствующие значения
y
. Значения
x
должны выбираться близко к вершине.
Нажмите, чтобы увидеть больше шагов...
x
y
−
2
0
−
1
3
0
4
1
3
2
0
Построим график параболы, используя ее свойства и выбранные точки.
Направление: направлено вниз
Вершина:
(
0
,
4
)
Фокус:
(
0
,
15
4
)
.
Ось симметрии:
x
=
0
Направляющая:
y
=
17
4
x
y
−
2
0
−
1
3
0
4
1
3
2
0
Объяснение:
a)f`(x)=√(x²-1)+2x(x-1)/2√(x²-1)=(x²-1+x²-x)/√(x²-1)=(2x²-x-1)/√(x²-1)
f`(2)=(8-2-1)/(√(4-1)=5/√3
b)y`=-1/√(1-(2x-1)³/3)*2/√3=-2√3/√3*√(2-4x²+4x)=-2/√(2-4x²+4x)
2
y=x³-6x²+9
D(y)=R
y(-x)=-x³-6x²+9 ни четная,ни нечетная
(0:9)-точка пересечения с осью оу
y`=3x²-12x=3x(x-4)=0
x=0 x=4
+ _ +
(0)(4)
возр x∈(-∞;0) U (4;∞)
убыв x∈(0;4)
ymax=y(0)=9
ymin=y(4)=-31
доп.точки
y(-1)=2
y(1)=4
y(5)=-16
график во вложении
3
1)Sx²dx/√(x³-5)=1/3Sdt/√t=2t/3=2√(x³-5)/3+C
t=x³-5⇒dt=3x²dx
2)S(4-3x)*e^3xdx=S(4e^3x-3x*e^3x)dx=-3Se^3x*xdx+4Se^3xdx=
=-e^3x*x+e^3x/3+4e^3x/3=-e^3x*x+5e^3x/3=e^3x(5/3-x)+C
В 4 в условии ошибка