Наибольшее значение функции: мы проводим перпендикуляр от самой верхней точки графика на ось У. Видим, что единица занимает у нас 2 клетки, то есть каждая клетка вверх прибавляет к значению функции по 0,5. У нас перпендикуляр проведен от верхней точки до седьмой клетки. 0,5*7=3,5.
Наименьшее значение функции: проводим перпендикуляр от самой нижней точки графика на ось У. Судя по всему функция монотонно (то есть все время и непрерывно) убывает. Следовательно фактическое наименьшее значение функции мы найти не можем, но можем указать, какое наименьшее значение она принимает на данном графике: выбираем самую нижнюю точку, ведем перпендикуляр до оси У. Это 9 клеток = - 4,5.
Промежутки возрастания: это когда функция идет вверх, простыми словами. Но перпендикуляры мы уже опускаем на ось Х. На нашем графике функция начинается с 6 клетки влево (подняли перпендикуляр от самой нижней точки слева на ось Х), видим, что единица по оси Х - это 2 клетки, значит, 1 клетка = 1/2 = 0,5.
Таким образом, начало функции она берет при Х=-0,5*6 = -3
Растет она до 2 клетки по оси Х. Мы знаем, что 2 клетки - это единица. Она слева от оси, значит, с минусом. Значит, промежуток возрастания = [-3;-1]
Промежутки убывания: Делаем все то же самое (опускаем перпендикуляр на ось Х) только оттуда, где график функции идет вниз.
Мы закончили возрастать на точке -1, дальше она начала падать.
Следовательно промежуток убывания функции от {-1; 5.5}, 5.5 - последний перпендикуляр данного графика на ось Х.
Значения Х, при котором значения функции меньше либо равны 0:
Мы опускаем перпендикуляры на ось Х из тех точек, что меньше 0 по оси У. Первая точка (самая левая), она ниже оси ОХ, значит, нам подходит. Это как мы знаем 6 клетка на ОХ, то есть -3. График пересекает ось ОХ в точке, где Х = где-то -2,2. А дальше функция уже становится больше 0.
Дальше нам не подходит, следовательно первый промежуток: [-3:-2.2}
А второй промежуток, где график функции опускается ниже оси ОХ - это {1,75; 5.5] (напомню, перпендикуляры опускаем на ось ОХ).
Наибольшее значение функции: мы проводим перпендикуляр от самой верхней точки графика на ось У. Видим, что единица занимает у нас 2 клетки, то есть каждая клетка вверх прибавляет к значению функции по 0,5. У нас перпендикуляр проведен от верхней точки до седьмой клетки. 0,5*7=3,5.
Наименьшее значение функции: проводим перпендикуляр от самой нижней точки графика на ось У. Судя по всему функция монотонно (то есть все время и непрерывно) убывает. Следовательно фактическое наименьшее значение функции мы найти не можем, но можем указать, какое наименьшее значение она принимает на данном графике: выбираем самую нижнюю точку, ведем перпендикуляр до оси У. Это 9 клеток = - 4,5.
Промежутки возрастания: это когда функция идет вверх, простыми словами. Но перпендикуляры мы уже опускаем на ось Х. На нашем графике функция начинается с 6 клетки влево (подняли перпендикуляр от самой нижней точки слева на ось Х), видим, что единица по оси Х - это 2 клетки, значит, 1 клетка = 1/2 = 0,5.
Таким образом, начало функции она берет при Х=-0,5*6 = -3
Растет она до 2 клетки по оси Х. Мы знаем, что 2 клетки - это единица. Она слева от оси, значит, с минусом. Значит, промежуток возрастания = [-3;-1]
Промежутки убывания: Делаем все то же самое (опускаем перпендикуляр на ось Х) только оттуда, где график функции идет вниз.
Мы закончили возрастать на точке -1, дальше она начала падать.
Следовательно промежуток убывания функции от {-1; 5.5}, 5.5 - последний перпендикуляр данного графика на ось Х.
Значения Х, при котором значения функции меньше либо равны 0:
Мы опускаем перпендикуляры на ось Х из тех точек, что меньше 0 по оси У. Первая точка (самая левая), она ниже оси ОХ, значит, нам подходит. Это как мы знаем 6 клетка на ОХ, то есть -3. График пересекает ось ОХ в точке, где Х = где-то -2,2. А дальше функция уже становится больше 0.
Дальше нам не подходит, следовательно первый промежуток: [-3:-2.2}
А второй промежуток, где график функции опускается ниже оси ОХ - это {1,75; 5.5] (напомню, перпендикуляры опускаем на ось ОХ).
Y=y(a) + y '(a)*(x - a), a=3
y(a) = 3a - a^2, y(3) = 9 - 9 = 0
y '(a) = 3 - 2a, y'(3) = 3 - 6 = -3
Y = -3*(x - 3) = -3x + 9 - касательная к графику.
Начертим три графика: две прямые и парабола.
Парабола: ветви вниз (т.к. коэфф. при квадрате отрицательный, = -1), точки пересечения с осью Ох: x=0, x=3. Ось симметрии проходит через точку x=1.5.
Y пересекает ось Оу в точке: (0; 9)
Площадь закрашенной фигуры - это интеграл в пределах от 0 до 3:
интеграл(Y - y)dx = интеграл(-3x + 9 - 3x + x^2)dx = интеграл(x^2 - 6x+ 9)dx = (x^3)/3 - 3x^2 + 9x = 27/3 - 3*9 + 9*3 - 0 = 9 - 27 + 27 = 9
ответ: площадь фигуры S=9