Возведение в степень – это такая же математическая операция, как сложение, вычитание, умножение или деление.
Сейчас объясню все человеческим языком на очень простых примерах. Будь внимателен. Примеры элементарные, но объясняющий важные вещи.
Начнем со сложения.
2+2+2+2+2+2+2+2=16
Объяснять тут нечего. Ты и так все знаешь: нас восемь человек. У каждого по две бутылки колы. Сколько всего колы? Правильно – 16 бутылок.
Теперь умножение.
Тот же самый пример с колой можно записать по-другому: 2⋅8=16 Математики - люди хитрые и ленивые. Они сначала замечают какие-то закономерности, а потом придумывают как быстрее их «считать». В нашем случае они заметили, что у каждого из восьми человек одинаковое количество бутылок колы и придумали прием, который называется умножением. Согласись, 2⋅8=162⋅8=16 считается легче и быстрее, чем 2+2+2+2+2+2+2+2=16.
Возведение в степень – это такая же математическая операция, как сложение, вычитание, умножение или деление.
Сейчас объясню все человеческим языком на очень простых примерах. Будь внимателен. Примеры элементарные, но объясняющий важные вещи.
Начнем со сложения.
2+2+2+2+2+2+2+2=16
Объяснять тут нечего. Ты и так все знаешь: нас восемь человек. У каждого по две бутылки колы. Сколько всего колы? Правильно – 16 бутылок.
Теперь умножение.
Тот же самый пример с колой можно записать по-другому: 2⋅8=16 Математики - люди хитрые и ленивые. Они сначала замечают какие-то закономерности, а потом придумывают как быстрее их «считать». В нашем случае они заметили, что у каждого из восьми человек одинаковое количество бутылок колы и придумали прием, который называется умножением. Согласись, 2⋅8=162⋅8=16 считается легче и быстрее, чем 2+2+2+2+2+2+2+2=16.
Объяснение:
Дано: F(x) = x² -2*x + 3, y(x)= -x+5
Найти: S=? - площадь фигуры
1) Находим точки пересечения графиков: F(x)=y(x).
-x²+x+2=0 - квадратное уравнение
b = - верхний предел, a = - 1 - нижний предел.
2) Площадь - интеграл разности функций. Прямая выше параболы.
s(x) = y(x) - F(x) = -2 -x + x² - подинтегральная функция
3) Интегрируем функцию и получаем:
S(x) = -2*x -1/2*x² + 1/3*x³
4) Вычисляем на границах интегрирования.
S(b) = S(2) = -4 -2 + 2,67 = -3,33
S(a) = S(-1) = 2 -0,5 -0,33 = 1,17
S = S(-1)- S(2) = 4,5(ед.²) - площадь - ответ
Рисунок к задаче в приложении.