1) Вычислим длину и ширину. Нам известна площадь (182м²) и формула для расчёта площади прямоугольника (S=ab, где S - площадь, b и a - стороны прямоугольника) Обозначим одну сторону за х м. Значит вторая равна (х+1) м. По формуле: x(x+1)=182 x²+x-182=0 Решив уравнение, найдём, что х1=-14 х2=13 Сторона не может быть отрицательной, значит х=13 м, значит вторая сторона равна 13+1=14 м. 2) Бордюр идёт по периметру площадки, значит нужно найти периметр этого прямоугольника. P=2(a+b), где Р - периметр, а и b - стороны P=2(13+14)=54 м. Чтобы определить, сколько потребуется пакетов, нужно периметр поделить на количество материала в пакетах. Пусть у - количество пакетов, а z-количество материала в пакете в метрах. у=P/z=54/25=2.16, поэтому нам понадобится три пакета (и ещё останется лишний материал) ответ: ширина площадки - 13, длина площадки - 4, кол-во пакетов - 3.
Нам известна площадь (182м²) и формула для расчёта площади прямоугольника (S=ab, где S - площадь, b и a - стороны прямоугольника)
Обозначим одну сторону за х м. Значит вторая равна (х+1) м.
По формуле: x(x+1)=182
x²+x-182=0
Решив уравнение, найдём, что
х1=-14
х2=13
Сторона не может быть отрицательной, значит х=13 м, значит вторая сторона равна 13+1=14 м.
2) Бордюр идёт по периметру площадки, значит нужно найти периметр этого прямоугольника. P=2(a+b), где Р - периметр, а и b - стороны
P=2(13+14)=54 м.
Чтобы определить, сколько потребуется пакетов, нужно периметр поделить на количество материала в пакетах. Пусть у - количество пакетов, а z-количество материала в пакете в метрах.
у=P/z=54/25=2.16, поэтому нам понадобится три пакета (и ещё останется лишний материал)
ответ: ширина площадки - 13, длина площадки - 4, кол-во пакетов - 3.
В решении.
Объяснение:
График функции, заданной уравнением у=(a +1)x+a-1 пересекает ось абсцисс в точке с координатами (-5; 0).
а) Найдите значение а:
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (а + 1)х + а - 1
0 = (а + 1)*(-5) + а - 1
0 = -5а - 5 + а - 1
0 = -4а - 6
4а = -6;
а = -6/4 (деление);
а = -1,5;
б) запишите функцию в виде у=kx+b;
Коэффициент k = (а + 1) = -1,5 + 1 = -0,5;
k = -0,5;
b = (а - 1) = -1,5 - 1
b = -2,5;
Уравнение функции:
у = -0,5х - 2,5.
в) Не выполняя построения графика функции, определите, через какую четверть график не проходит.
Так как k < 0 и b < 0, график не проходит через 1 четверть.