Y=x⁴-8x² 1) Находим область определения функции: D(y)=R Данная функция непрерывна на R 2) Находим производную функции: y`(x)=4x³-16x=4x(x²-4)=4x(x-2)(x+2) 3) Находим критические точки: D(y`)=R y`(x)=0 4x(x-2)(x+2)=0 x=0 или х=2 или х=-2 4) Находим знак производной и характер поведения функции: - + - + -202 ↓ min ↑ max ↓ min ↑
у(х) - убывает на х∈(-∞;-2)U(0;2) у(х) - возрастает на (-2;0)U(2;+∞) х=-2 и х=2 - точки минимума функции х=0 - точка максимума функции -2; 0; 2- точки экстремума функции у(-2)=(-2)⁴-8*(-2)²=16-8*4=16-32=-16 у(2)=2⁴-8*2²=16-8*4=16-32=-16 у(0)=0⁴-8*0²=0-0=0 ответ: Функция монотонно возрастает на (-2;0)U(2:+∞) и монотонно убывает на (-∞;-2)U(0;2), x(min)=(+-)2, y(min)=-16, x(max)=0, y(max)=0
Хэто ящиков по 3 кг 24 -х ящиков по 5 кг 3х это кг в ящиках по 3 кг 5 (24-х) кг в ящиках по 5 кг составляем уравнение 3х + 5(24-х)=100 3х +120 -5х =100 -2х=-20 х=10 3 *10=30 кг в ящиках по 3кг 24-10 =14 14 *5=70 кг в ящиках по 5 кг 30+70 =! ответ : 10 ящиков меньших
1) Находим область определения функции:
D(y)=R Данная функция непрерывна на R
2) Находим производную функции:
y`(x)=4x³-16x=4x(x²-4)=4x(x-2)(x+2)
3) Находим критические точки:
D(y`)=R y`(x)=0
4x(x-2)(x+2)=0
x=0 или х=2 или х=-2
4) Находим знак производной и характер поведения функции:
- + - +
-202
↓ min ↑ max ↓ min ↑
у(х) - убывает на х∈(-∞;-2)U(0;2)
у(х) - возрастает на (-2;0)U(2;+∞)
х=-2 и х=2 - точки минимума функции
х=0 - точка максимума функции
-2; 0; 2- точки экстремума функции
у(-2)=(-2)⁴-8*(-2)²=16-8*4=16-32=-16
у(2)=2⁴-8*2²=16-8*4=16-32=-16
у(0)=0⁴-8*0²=0-0=0
ответ: Функция монотонно возрастает на (-2;0)U(2:+∞) и монотонно убывает на (-∞;-2)U(0;2), x(min)=(+-)2, y(min)=-16, x(max)=0, y(max)=0