(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
Находим точки, в которых неравенство равно нулю:
x-1=0 x=1
x+5=0 x=-5
Наносим на прямую (-∞;+∞) эти точки:
-∞-51+∞
Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞)
Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона:
(-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ +
(-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ -
(1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ +
-∞+-5-1++∞ ⇒
x∈(-∞;-5)U(1;+∞).
1) Тут явно опечатка, должно быть 4y^2.
x^2 - 6x + 4y^2 + 20y + 25 = 0
(x^2 - 6x + 9) - 9 + 4(y^2 + 2*y*5/2 + 25/4) - 25 + 25 = 0
(x - 3)^2 + 4(y + 5/2)^2 = 9
(x - 3)^2 / 9 + (y + 5/2)^2 / (9/4) = 1
Это эллипс с центром (3, -5/2) и полуосями a = √9 = 3; b = √(9/4) = 3/2
2) 9x^2 - 12x + y^2 + 4y - 8 = 0
9(x^2 - 12/9*x) + (y^2 + 4y) - 8 = 0
9(x^2 - 2*x*2/3 + 4/9) - 4 + (y^2 + 4y + 4) - 4 - 8 = 0
9(x - 2/3)^2 + (y + 2)^2 = 16
(x - 2/3)^2 / (16/9) + (y + 2)^2 / 16 = 1
Это эллипс с центром (2/3; -2) и полуосями a = √(16/9) = 4/3; b = √16 = 4