с алгеброй два задания:
1. Найдите координаты вершины параболы. a) y = x^2 - x- 20
б) у = 3x^2 - 5x +2 в)y = -0,5x^2 -3x +3,5
г) y=-x2+4x. (в первом только написать чему равен x0 и y0)
2. Постройте график квадратичной функции a) y = x2 +2x-15 б) у = -2 x2+8x - 6 в) у = 0,5 x2 -3x +4 b) y = - 2x2 +6x.
Объяснение:Найти производную следующих функций:
1) у = 4х^4 + 3х; y'= (4x⁴+3x)'= 16x³+3
2) у = 12х^2 - х – 2; y'= (12x²-x-2)' =24x - 1
3) у = -4х^9 - 8х^4 – 6х + 22; y' = (-4x⁹-8x⁴-6x+22)= - 36x⁸-32x³-6
4) у= 8х^7 - 14х^5 + 5х - 10; y' =(8x⁷-14x⁵+5x-10)'= 56x⁶-70x⁴+5
5) у = 6х^3 + (1/9)х^3 + 9х; y'= 18x²+(1/3)x²+9
6) у = 19х^4 + 3х^8 – 22. y'=76x³+24x⁷
«Производная степенной, логарифмической и показательной функций»
Найти производную следующих функций:
1. у = (х - 2)^8 y' = 8(x-2)⁷(x-2)'=8(x-2)⁷
2. у = (х2 + 2х)^3 y'= 3(x²+2x)²(x²+2x)'= 3(x²+2x)(x+2)=3x(x+2)²= 3x(x²+4x+4)=3x³+12x²+12x
3. у = (х +3)^4 y'=4(x+3)³(x+3)'= 4(x+3)³ =4( x³+9x²+27x+27)
4. у = 41^х y' = 41ˣ ln41
5. у = (3 + 5х + х3)^2 y' = 2( x³+5x+3)( x³+5x+3)'= 2( x³+5x+3)(2x+5)
знаменатель : выражение √(1-х )под знаком корня четной степени ,значит подкоренное выражение 1-х≥0 ⇒ х≤1 , но при этом х+√(1-х ≠0,
так как на 0 делить нельзя ,значит -х ≠√(1-х )
найдем точки в которых выполняется это равенство - х=√(1-х ), чтобы
исключить х<0
х=√(1-х ), возведем обе части в квадрат
х²=1-х
х²+х-1=0
D=1+4=5
x₁=(-1+√5)/2 ≈0,62
x₂=(-1-√5)/2≈ -1,62 < 0
x∈(-∞ ; (-1-√5)/2) ∪ ((-1-√5)/2 ; 1]