Координаты точки пересечения графиков данных функций (-1; -1)
Решение системы уравнений х= -1
у= -1
Объяснение:
Решить графически систему уравнений
2x-y= -1
x+y= -2
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2x-y= -1 x+y= -2
-у= -1-2х у= -2-х
у=1+2х
Таблицы:
х -1 0 1 х -1 0 1
у -1 1 3 у -1 -2 -3
Согласно графика, координаты точки пересечения графиков данных функций (-1; -1)
Координаты точки пересечения графиков данных функций (-1; -1)
Решение системы уравнений х= -1
у= -1
Объяснение:
Решить графически систему уравнений
2x-y= -1
x+y= -2
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2x-y= -1 x+y= -2
-у= -1-2х у= -2-х
у=1+2х
Таблицы:
х -1 0 1 х -1 0 1
у -1 1 3 у -1 -2 -3
Согласно графика, координаты точки пересечения графиков данных функций (-1; -1)
Решение системы уравнений х= -1
у= -1
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0
a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk, k∈Z
b) 2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk, k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk, k∈Z
ответ: 2πk, k∈Z;
2*(-1)^k*arcsin(2/3)+2πk, k∈Z.
2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk, k∈Z
x=(-1)^k*(π/42)+(π/7)*k, k∈Z
ответ: (-1)^k*(π/42)+(π/7)*k, k∈Z.
3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
=0
a) При у=-1/2
,
k∈Z;
b) При у=2
k∈Z.
ответ: k∈Z;
k∈Z.