Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
а)y`=2x
б)y`=2x-1
в)y`=2x
г)y`=2x
д)y`=10x
е)y`=-2x
ж)y`=10x+3
з)y`=6x-3
и)y`=2ax+b
4.18
а)y`=3x²+2x=1
б)y`=3x²-2x-1
в)y`=15x²
г)y`=-3x²
д)y`=6x²-6x+1
е)y`=3x²-4
ж)y`=-3x²+10x-8
з)3ax²+bx+c
4.20
a)f`(x)=12x²-6x-2
f`(0)=-2
б)f`(x)=-15x²+14x+1
f`(1)=-15+14+1=0
в)f`(x)=-3x²+4
f`(-1)=-3=4=1
г)f`(-2)=48-4-6=38
4.21
а)y`=2x+6
2x+6=0⇒2x=-6⇒x=-3
2x+6<0⇒x<-3⇒x∈(-∞;-3)
2x+6>0⇒x>-3⇒x∈(-3;∞)
б)y`=3x²+6x
3x(x+2)=0⇒x=0 U x=-2
3x(x+2)<0⇒-2<x<0⇒x∈(-2;0)
3x(x=2)>0⇒x<-2 U x>0⇒x∈(-∞;-2) U (0;∞)
в)y`=x²-6x+9=(x-3)²
(x-3)²=0⇒x=3
(x-3)²<0 нет решения
(x-3)²>0⇒x<3 U x>3⇒x∈(-∞;3) U (3;∞)
г)y`=3x²+10x-13
3x²+10x-13=0
D=100+156=256
x=(-10-16)/6=-13/3 U x=(-10+16)/6=1
3x²+10x-13<0⇒x∈(-13/3;1)
3x²+10x-13>0⇒x∈(-∞;-13/3) U (1;∞)
Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.