Составим систему неравенств, учитывая каждое ограничение, накладывающееся на аргумент:
Теперь продолжаем решать наше неравенство.
Возведём обе части неравенства в квадрат.
Получаем квадратное неравенство. Чтобы найти нули, приравняем левую часть к 0 и найдём корни квадратного уравнения.
По теореме Виета:
Возвращаемся к неравенству:
Решим его методом интервалов.
Нули: 7; -1.
+ - +
---------------------о------------------------------о-----------------------> х
Получаем, что решением квадратного неравенства являются промежутки и . Но не забываем про ограничение , которое мы вычислили выше.
ответ: .
2)
Это задание можно решить методом интервалов. Нужно найти нули. С левым множителем понятно, он обращается в 0 при . Приравняем правый множитель к нулю, чтобы найти его корни.
По теореме Виета:
Применяем метод интервалов для нашего неравенства.
Нули: 1; 2; 3.
+ - - +
----------------------------------------------------------------------------> x
Так как знак неравенства , то нам нужны те промежутки где стоит знак +. Таких два: и , но и это ещё не всё. Есть ещё точка , и она тоже является решением, поскольку при ней выражение обращается в 0.
x² +px +q =0 .
По условию p, q ∈ Q ( Q -множество рациональных чисел).
По теореме Виета : { x₁ +x₂ = - p ; x₁ *x₂ =q ⇔{ p = -(x₁ +x₂) ; q =x₁ *x₂.
* * * для того, чтобы p, q были рациональными корни должны иметь вид : x₁ =a +√b ; x₂ =a -√b , √b -иррациональное число * * *
---
а)
x₂ = √3 ⇒ x₂ = -√3.
p = -( x₁ +x₂) =0 ;
q =x₁ *x₂ =√3 *(-√3) = -3 .
x² -3 = 0 .
---
б)
x₁ = -1+√3⇒x₂ = -1-√3 . || иначе x₂ = -(√3+1) ||
p = -(x₁+x₂) = - ( ( -1+√3)+( -1-√3) )=2 ;
q =x₁ *x₂ = (√3-1)* (-(√3 +1) ) = -((√3) ² -1)= -(3-1) =-2 .
x² +2x -2 = 0 .
---
в)
x₁ = 2-√5 ⇒x₂ =2+√5
p= -(x₁+x₂) = - ( 2-√5+2+√5 )= -4 ;
q =x₁ *x₂ = ( 2-√5)*(2+√5) =2² -(√5)² =4-5 = -1 .
x² -4x -1 =0 .
1)
Составим систему неравенств, учитывая каждое ограничение, накладывающееся на аргумент:
Теперь продолжаем решать наше неравенство.
Возведём обе части неравенства в квадрат.
Получаем квадратное неравенство. Чтобы найти нули, приравняем левую часть к 0 и найдём корни квадратного уравнения.
По теореме Виета:
Возвращаемся к неравенству:
Решим его методом интервалов.
Нули: 7; -1.
+ - +
---------------------о------------------------------о-----------------------> х
Получаем, что решением квадратного неравенства являются промежутки и . Но не забываем про ограничение , которое мы вычислили выше.
ответ: .
2)
Это задание можно решить методом интервалов. Нужно найти нули. С левым множителем понятно, он обращается в 0 при . Приравняем правый множитель к нулю, чтобы найти его корни.
По теореме Виета:
Применяем метод интервалов для нашего неравенства.
Нули: 1; 2; 3.
+ - - +
----------------------------------------------------------------------------> x
Так как знак неравенства , то нам нужны те промежутки где стоит знак +. Таких два: и , но и это ещё не всё. Есть ещё точка , и она тоже является решением, поскольку при ней выражение обращается в 0.
ответ: .