С формулы a в квадрате плюс минус 2 А Б плюс б в квадрате равно скобка открывается а плюс минус Б скобка закрывается в квадрате Докажите что при любых значениях X выражения X квадрате плюс 4 икс минус 4 может принимать лишь неположительные значения
Получившееся уравнение не имеет решений. 2) При а=-7 получим:
Получившееся уравнение имеет бесконечное множество корней. 3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
Именно в этом случае уравнение будет иметь один корень. ответ:
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
Выражение представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
Иначе можно было найти ответ приравняв к нулю первую производную функции:
Ууу, это вы хорошую задачку придумали :) Ну, то есть не вы придумали, но она мне очень нравится. Уравнение будет такое: , его надо решить в целых числах. Есть алгоритм решения таких уравнений, называются они линейными диофантовыми уравнениями, потому что изучал их Диофант, полагаю. Так вот, сначала нужно найти НОД коэффициентов, то есть 11 и 14, так как они взаимнопросты, то
Потом на него надо сократить, при чём если не сократится, то решения нет. Но нам тут сокращать не на что. Дальше надо угадать какое-то решение, одно, любое. На самом деле, оно не угадывается, а находится по алгоритму Евклида обратным ходом (есть такая ещё теорема о линейном представлении НОДа). Ну так вот, из неё , значит одно из решений будет таким:
Круто, да? Подойдёт, проверьте. Это я просто домножил на 2013 представление единицы. Вы скажете: ну это же не решение, какое-то отрицательное число! Я вам на это скажу, что вы правы. И замечу только, что общее решение в целых числах пишется так:
И теперь последний шаг, нужно найти такие t, что оба эти числа натуральны.
Ну и выходит, что нету таких t, может, я где-то ошибся, но вроде калькулятором пользовался. Такие дела. Предмет, на котором это проходят, называется "теория чисел", а задачки такие на олимпиадах дают, там школьники это всё уже должны знать.
Рассмотрим три случая:
1) При а=7 получим:
Получившееся уравнение не имеет решений.
2) При а=-7 получим:
Получившееся уравнение имеет бесконечное множество корней.
3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
Именно в этом случае уравнение будет иметь один корень.
ответ:
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а.
Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
Выражение представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
Иначе можно было найти ответ приравняв к нулю первую производную функции:
ответ: 8,5
Уравнение будет такое: , его надо решить в целых числах.
Есть алгоритм решения таких уравнений, называются они линейными диофантовыми уравнениями, потому что изучал их Диофант, полагаю.
Так вот, сначала нужно найти НОД коэффициентов, то есть 11 и 14, так как они взаимнопросты, то
Потом на него надо сократить, при чём если не сократится, то решения нет. Но нам тут сокращать не на что.
Дальше надо угадать какое-то решение, одно, любое. На самом деле, оно не угадывается, а находится по алгоритму Евклида обратным ходом (есть такая ещё теорема о линейном представлении НОДа). Ну так вот, из неё , значит одно из решений будет таким:
Круто, да? Подойдёт, проверьте. Это я просто домножил на 2013 представление единицы.
Вы скажете: ну это же не решение, какое-то отрицательное число!
Я вам на это скажу, что вы правы. И замечу только, что общее решение в целых числах пишется так:
И теперь последний шаг, нужно найти такие t, что оба эти числа натуральны.
Ну и выходит, что нету таких t, может, я где-то ошибся, но вроде калькулятором пользовался.
Такие дела. Предмет, на котором это проходят, называется "теория чисел", а задачки такие на олимпиадах дают, там школьники это всё уже должны знать.
Знание - сила.