Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Построить график, график парабола со смещённым центром, ветви направлены вверх. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.
В решении.
Объяснение:
Постройте график функции y=2x²-4x-6.
Построить график, график парабола со смещённым центром, ветви направлены вверх. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -2 0 2 4
у 22 6 6 22
Найдите: а) область значений функции;
График не пересекает ось Ох, D<0.
Определить координаты вершины параболы:
х₀= -b/2a=4/4=1;
y₀=2*1²-4*1+6=4;
Координаты вершины параболы (1; 4).
Область значений функции Е(у) [4, +∞).
б) при каких значениях аргумента функция убывает.
Согласно графика, функция убывает при х∈(-∞, 1).