V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
Теперь надо отыскать корни на заданном промежутке. Впихнём каждую формулу по очереди в данный промежуток и решим полученное двойное неравенство относительно n:
0≤π/6 + πn ≤ π
-π/6 ≤ πn ≤ 5π/6
-1/6 ≤n≤ 5/6
Целые значения n из этого интервала - n= 0
n = 0 x = π/6 + π * 0 = π/6 - первый корень из этого промежутка
Точно также проделываем со вторым корнем.
0 ≤-π/6 + πn ≤ π
π/6 ≤ πn ≤ 7π/6
1/6 ≤ n ≤ 7/6
На данном интервале единственное целое значение n - это n = 1
n = 1 x = -π/6 + π = 5π/6 - второй и последний корень из данного промежутка
Ну и теперь находим сумму требуемых корней:
π/6 + 5π/6 = 6π/6 = π
Значит, сумма корней данного уравнения из требуемого промедутка равна пи.
V(5x+7) - V(x+4) =4x+3
ОДЗ:
{5x+7>=0
{x+4>=0
{5x>= -7
{x>= -4
{x>=-7/5
{x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4
У нас получилась следующая ОДЗ:
{x>= -7/5
{x>= -4
{x>= -3/4
Решением этой системы будет промежуток: [-3/4; + бесконечность)
Итак, возводим в квадрат:
(5x+7)^2 - (x+4)^2 = (4x+3)^2
25x^2+70x+49-x^2-8x-16=16x^2+24x+9
24x^2+62x+33= 16x^2+24x+9
24x^2+62x+33-16x^2-24x-9=0
8x^2+38x+24=0 |:2
4x^2+19x+12=0
D= 19^2-4*4*12=169
x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.)
x2=(-19+13)/8= -3/4
Получается, что уравнение имеет один корень => k=1
Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4
Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2
ответ:2
Сначала просто решим уравнение.
4sin²x = 1
sin² x = 1/4
(1 - cos 2x)/2 = 1/4
1 - cos 2x = 1/2
cos 2x = 1/2
2x = ±arccos 1/2 + 2πn,n∈Z
2x = ±π/3 + 2πn,n∈Z
x = ±π/6 + πn,n∈Z
Расписывая эту серию корней, получаем,
x1 = π/6 + πn,n∈Z
x2 = -π/6 + πn,n∈Z
Теперь надо отыскать корни на заданном промежутке. Впихнём каждую формулу по очереди в данный промежуток и решим полученное двойное неравенство относительно n:
0≤π/6 + πn ≤ π
-π/6 ≤ πn ≤ 5π/6
-1/6 ≤n≤ 5/6
Целые значения n из этого интервала - n= 0
n = 0 x = π/6 + π * 0 = π/6 - первый корень из этого промежутка
Точно также проделываем со вторым корнем.
0 ≤-π/6 + πn ≤ π
π/6 ≤ πn ≤ 7π/6
1/6 ≤ n ≤ 7/6
На данном интервале единственное целое значение n - это n = 1
n = 1 x = -π/6 + π = 5π/6 - второй и последний корень из данного промежутка
Ну и теперь находим сумму требуемых корней:
π/6 + 5π/6 = 6π/6 = π
Значит, сумма корней данного уравнения из требуемого промедутка равна пи.