1. Метод математической индукции. Проверим для n=1 n^3+3n^2+5n+3=12 делится на 3, утверждение верно для n=1 n^3+3n^3+5n+3=12 делится на 3, утверждение верно для n=1 Пусть утверждение верно для всех n≤k, докажем его для n=k+1 (k+1)^3+3(k+1)^2+5(k+1)+3= =k^3+3k^2+3k+1+3*(k^2+2k+1)+5k+5+3= =k^3+3k^2+5k+3+3k^2+9k+9= =(k^3+3k^2+5k+3)+3(k^2+3k+3) (k^3+3k^2+5k+3) делится на 3 по предположению индукции, 3(k^2+3k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n. Для тройки: (k+1)^3+3(k+1)^3+5(k+1)+3= =4(k^3+3k^3+3k+1)+5k+5+3=(4k^3+5k+3)+3*(4k^2+4k+3) (4k^3+5k+3) делится на 3 по предположению индукции, 3*(4k^2+4k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.
Проверим для n=1
n^3+3n^2+5n+3=12 делится на 3, утверждение верно для n=1
n^3+3n^3+5n+3=12 делится на 3, утверждение верно для n=1
Пусть утверждение верно для всех n≤k, докажем его для n=k+1
(k+1)^3+3(k+1)^2+5(k+1)+3=
=k^3+3k^2+3k+1+3*(k^2+2k+1)+5k+5+3=
=k^3+3k^2+5k+3+3k^2+9k+9=
=(k^3+3k^2+5k+3)+3(k^2+3k+3)
(k^3+3k^2+5k+3) делится на 3 по предположению индукции, 3(k^2+3k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.
Для тройки:
(k+1)^3+3(k+1)^3+5(k+1)+3=
=4(k^3+3k^3+3k+1)+5k+5+3=(4k^3+5k+3)+3*(4k^2+4k+3)
(4k^3+5k+3) делится на 3 по предположению индукции, 3*(4k^2+4k+3) делится на 3, следовательно утверждение верно для n=k+1, следовательно утверждение верно для любых натуральных n.
1.log2(10x)-log2(4x+156)=log2 1-7log7 4
log2(10x/(4x+156))=0-7[log2 4]/log2 7
все верно в условии???
2. log15 (6-35x)*log44(1-2x)=log8 1
log15 (6-35x)*log44(1-2x)=0 ⇔
1)log15 (6-35x)=0 2) log44(1-2x)=0
(6-35x)=1 x=1/7 1-2x=1 x=0
проверка
log15 (1)*log44(1-2/7)=0 верно log15 (6-0)*log44(1)=0 верно
3. log2(x+1)+log2(4x+4)=6 одз: x+1>0⇔x>-1
(x+1)(4x+4)=2^6
4(x+1)²=4·2^4
(x+1)²=4²
(x+1-4)(x+1+4)=0 x=3 x=-5∉ одз: x>-1