В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
artemkovalev1
artemkovalev1
06.09.2020 11:55 •  Алгебра

с тестом, на решение дробных рациональных уравнений​


с тестом, на решение дробных рациональных уравнений​

Показать ответ
Ответ:
Mashavyd
Mashavyd
15.02.2021 05:50

1) Обозначим через:

х - число страниц, которое за 1 час печатает 1 машинистка

у - число страниц, которое за 1 час печатает 2 машинистка

2) Так как первая машинистка печатает на 1.5 часа быстрее,чем вторая, то первое уравнение будет:

\frac{30}{y}-\frac{30}{x} =1,5\\\\\

а так как они вместе за 1 час печатают 30 страниц, то второе уравнение будет иметь вид:

х + у = 30

3) Из второго уравнения выразим у через х и подставим в первое уравнение:

у = 30 - х

\frac{30}{30-x} -\frac{30}{x} =1,5\\\\\Избавляемся от дроби, умножив все члены уравнения на х(30 - х), получаем:

30х - 900 + 30х = - 1,5х² + 45х

1,5х² + 15х -900 = 0

Разделим все члены уравнения на 1,5

х² + 10х -600 = 0

4) Решаем полученное квадратное уравнение:

D = 10² + 4*600 = 2500

√D = 50

x₁ = ( -10+50)/2 = 20

x₂ = (-10-50)/2 = - 30 отрицательное число, нам не подходит.

Значит первая машинистка печатает 20 страниц в час

5) Тогда 2 машинистка за 1 час печатает:

у = 30 - х = 30 - 20 = 10 страниц

6) Тогда вторая машинистка 60 страниц отпечатает за:

60/10 = 6 часов

ответ: За 6 часов

0,0(0 оценок)
Ответ:
rom252
rom252
16.06.2021 07:08

Данное уравнение не имеет целых корней.

Используем метод Феррари:

уравнение вида

(1)\ x^4+ax^3+bx^2+cx+d=0

с замены x=y-\frac{a}{4}  

приводим к виду:

(2)\ y^4+p*y^2+qy+r=0

где:

p=b-\frac{3a^2}{8}\\q=\frac{a^3}{8}-\frac{a*b}{2}+c\\r=-\frac{3a^4}{256}+\frac{a^2b}{16}-\frac{a*c}{4}+d

добавим и вычтем из левой части уравнения 2 выражение 2sy^2+s^2, где s - некоторое число:

y^4+p*y^2+qy+r=y^2+py^2+2sy^2+qy+r+s^2-2sy^2-s^2=\\=y^4+2sy^2+s^2+y^2(p-2s)+qy+r-s^2=\\=(y^4+2s*y^2+s^2)+(p-2s)(y^2+\frac{2*qy}{2*(p-2s)})+r-s^2=\\=(y^2+s)^2+(p-2s)(y^2+2(\frac{qy}{2(p-2s)}+\frac{q^2}{4(p-2s)^2})-\frac{\frac{q^2}{4(p-2s)^2}}{p-2s}+r-s^2=\\=(y^2+s)^2+(p-2s)(y+\frac{q}{2(p-2s)})^2+r^2-s^2-\frac{q^2}{4(p-2s)}

получим:

(3)\ (y^2+s)^2+(p-2s)(y+\frac{q}{2(p-2s)})^2+r^2-s^2-\frac{q^2}{4(p-2s)}=0

Пусть s - корень уравнения

(4)\ r^2-s^2-\frac{q^2}{4(p-2s)}=0

Тогда уравнение 3 примет вид:

(5)(y^2+s)^2+(p-2s)(y+\frac{q}{2(p-2s)})^2=0

Избавляемся в уравнении 4 от знаменателя:

r(p-2s)-s^2(p-2s)-\frac{q^2}{4}=0

Раскроем скобки и получим:

(6)\ 2s^3-ps^2-2rs+rp-\frac{q^2}{4}=0

Уравнение 6 называется кубической резольвентой уравнения 4 степени.

Разложим уравнение 5 на множители:

(y^2+s)^2+(p-2s)(y+\frac{q}{2(p-2s)})^2=0\\(y^2+s)^2-(2s-p)(y-\frac{q}{2(2s-p)})^2=0\\(y^2+s^2)^2-(y*\sqrt{2s-p}-\frac{q}{2\sqrt{2s-p}})^2=0\\(y^2-y\sqrt{2s-p}+\frac{q}{2\sqrt{2s-p}}+s)(y^2+y\sqrt{2s-p}-\frac{q}{2\sqrt{2s-p}}+s)=0

Получим два квадратных уравнения:

(7)\ y^2-y\sqrt{2s-p}+\frac{q}{2\sqrt{2s-p}}+s=0\\(8)\ y^2+y\sqrt{2s-p}-\frac{q}{2\sqrt{2s-p}}+s=0

Применяем этот метод для решения уравнения

x^4+4x-1=0

Перепишем уравнение в полном виде:

x^4+0x^3+0x^2+4x-1=0

коэффиценты:

a=0

b=0

c=4

d=-1

определяем p,q и r:

p=b-\frac{3a^2}{8}=0\\q=\frac{a^3}{8}-\frac{a*b}{2}+c=0-0+c=4\\r=-\frac{3a^4}{256}+\frac{a^2b}{16}-\frac{a*c}{4}+d=0+0-0+d=-1

ищем s:

2s^3-ps^2-2rs+rp-\frac{q^2}{4}=0\\2s^3+2s-4=0\\s^3+s-2=0\\s=1\\1+1-2=0\Rightarrow s=1

подставляем p,q,r и s в квадратные уравнения 7 и 8:

y^2-y\sqrt{2s-p}+\frac{q}{2\sqrt{2s-p}}+s=0\\y^2-y\sqrt{2}+\frac{4}{2\sqrt{2}}+1=0\\y^2-y\sqrt{2}+\sqrt{2}+1=0\\D=2-4(\sqrt{2}+1)

y^2+y\sqrt{2s-p}-\frac{q}{2\sqrt{2s-p}}+s=0\\y^2+y\sqrt{2}-\sqrt{2}+1=0\\D=2-4(-\sqrt{2}+1)=2+4\sqrt{2}-4=4\sqrt{2}-2\\y_{1,2}=\frac{-\sqrt{2} \pm \sqrt{4\sqrt{2}-2}}{2}

Теперь находим x:

x=y-\frac{a}{4}=y-0=y

ответ: \frac{-\sqrt{2} \pm \sqrt{4\sqrt{2}-2}}{2}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота