y= -x² + 4x - 3
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
Объяснение:
1)находим производную 3t^2+5t=6t+5
6t+5=6*2+5=17 м/с скорость в момент t=2
производная №2)6t+5=6 => уcкорение равно 6 м/с^2
2)Имеем функцию:
y = 2 * x^3 - 4 * x^2.
Напишем уравнение касательной к графику функции в точке с абсциссой x0:
y = y'(x0) * (x - x0) + y(x0);
Поэтапно находим значения функции и ее производной в точке с абсциссой x0:
y(x0) = 2 * (-1) - 4 * 1 = -2 - 4 = -6;
y'(x) = 6 * x^2 - 8 * x;
y'(x0) = 6 * 1 - 8 * (-1) = 6 + 8 = 14;
Подставляем полученные значения в формулу касательной:
y = 14 * (x + 1) - 6;
y = 14 * x + 14 - 6;
y = 14 * x + 8 - уравнение нашей касательной.
y= -x² + 4x - 3
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
Объяснение:
1)находим производную 3t^2+5t=6t+5
6t+5=6*2+5=17 м/с скорость в момент t=2
производная №2)6t+5=6 => уcкорение равно 6 м/с^2
2)Имеем функцию:
y = 2 * x^3 - 4 * x^2.
Напишем уравнение касательной к графику функции в точке с абсциссой x0:
y = y'(x0) * (x - x0) + y(x0);
Поэтапно находим значения функции и ее производной в точке с абсциссой x0:
y(x0) = 2 * (-1) - 4 * 1 = -2 - 4 = -6;
y'(x) = 6 * x^2 - 8 * x;
y'(x0) = 6 * 1 - 8 * (-1) = 6 + 8 = 14;
Подставляем полученные значения в формулу касательной:
y = 14 * (x + 1) - 6;
y = 14 * x + 14 - 6;
y = 14 * x + 8 - уравнение нашей касательной.