Присмотревшись к системе внимательно, замечаем, что это - система линейных уравнений, поскольку переменные x и y входят в неё в первых степенях.
Следовательно, решаем её как и любую линейную систему: подстановкой.
Из первого уравнения выражаем y и подставляем во второе:
Подставляем во второе:
Здесь я выделил коэффициент при x, зависящий от параметра, а, кроме того, кубический многочлен от параметра разложил на множители для большего удобства.
Теперь рассматриваем уравнение как линейное(с переменной x).
Очевидно, для любого линейного уравнения возможны следующие три случая:
а)Уравнение имеет ровно одно решение;
б)Уравнение имеет бесконечное множество решений;
в)Уравнение вообще не имеет решений.
Для начала стоит рассмотреть частные случаи.
а)Пусть . Тогда после подстановки получаем уравнение
, которое представляет из себя верное равенство(при умножении на 0 всегда получаем 0), а потому верно для любого x.
б)Пусть . Аналогичная ситуация имеет место. Уравнение вновь имеет бесконечно много решений, следовательно, и вся система(поскольку каждому x соответствует ровно один y, то бесконечному количеству значений x соответствует бесконечное количество значений y).
в)Пусть теперь .
Тогда сокращаем обе части уравнения на общий множитель:
То есть, для всех таких значений параметра а всегда имеет ровно 1 решение линейного уравнения(равное a-1). Тогда сразу из другого уравнения находим y:
таким образом, ответ можно записать так:
ответ: если , система имеет бесконечно много решений;
Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Присмотревшись к системе внимательно, замечаем, что это - система линейных уравнений, поскольку переменные x и y входят в неё в первых степенях.
Следовательно, решаем её как и любую линейную систему: подстановкой.
Из первого уравнения выражаем y и подставляем во второе:
Подставляем во второе:
Здесь я выделил коэффициент при x, зависящий от параметра, а, кроме того, кубический многочлен от параметра разложил на множители для большего удобства.
Теперь рассматриваем уравнение как линейное(с переменной x).
Очевидно, для любого линейного уравнения возможны следующие три случая:
а)Уравнение имеет ровно одно решение;
б)Уравнение имеет бесконечное множество решений;
в)Уравнение вообще не имеет решений.
Для начала стоит рассмотреть частные случаи.
а)Пусть . Тогда после подстановки получаем уравнение
, которое представляет из себя верное равенство(при умножении на 0 всегда получаем 0), а потому верно для любого x.
б)Пусть . Аналогичная ситуация имеет место. Уравнение вновь имеет бесконечно много решений, следовательно, и вся система(поскольку каждому x соответствует ровно один y, то бесконечному количеству значений x соответствует бесконечное количество значений y).
в)Пусть теперь .
Тогда сокращаем обе части уравнения на общий множитель:
То есть, для всех таких значений параметра а всегда имеет ровно 1 решение линейного уравнения(равное a-1). Тогда сразу из другого уравнения находим y:
таким образом, ответ можно записать так:
ответ: если , система имеет бесконечно много решений;
если , то система имеет единственное решение
Объяснение:
HoteМодератор
Это Проверенный ответ
×
Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Подробнее - на -
Объяснение: