Периметр прямоугольника равен : (а + в) * 2 , где а и в - стороны прямоугольника . Площадь прямоугольника равна : S = а * в . Из условия задачи имеем (а + в) * 2 = 26 см ; а + в = 13 ; а = (13 - в) S = (13 - в) * в = 36 ; 13в - в^2 = 36 ; в^2 - 13в + 36 = 0 D = (- 13)^ - 4 * 1 *36 = 169 - 144 = 25 ; Sqrt(25) = 5 Найдем корни уравнения . в' = (-(- 13) + 5) / 2*1 = (13 + 5) / 2 = 9 ; в" = (- (- 13) - 5) / 2 * 1 = (13 - 5) / 2 = 4 . Получили 2 действительных корня : 9 см и 4 см . Другая сторона прямоугольника будет соответственно равна : 4 см и 9см
Р= 2×(a+b) =26 см
S= a×b = 36 см²
По условию задачи получается система уравнений:
{2×(а+b)=26
{ab= 36
{a+b =26/2 ⇒ b = 13-a
{ab=36
Подставим значение переменной b во второе уравнение:
а(13-а) =36
13а -а²=36
0= 36-13a +a ²
а² -13а +36 =0
D= (-13)² -4 *36 *1= 169-144=25
D>0 - два корня уравнения , √D=5
a₁= (13-5)/2 = 8/2=4
a₂= (13+5)/2 = 18/2 = 9
b₁= 13-4=9
b₂= 13-9 =4
Оба ответа удовлетворяют условию задачи.
Р= 2×(4+9) = 2×13=26 см ; S= 4*9= 36 см²
ответ : 9 см и 4 см - стороны прямоугольника.
Из условия задачи имеем (а + в) * 2 = 26 см ; а + в = 13 ; а = (13 - в)
S = (13 - в) * в = 36 ; 13в - в^2 = 36 ; в^2 - 13в + 36 = 0
D = (- 13)^ - 4 * 1 *36 = 169 - 144 = 25 ; Sqrt(25) = 5 Найдем корни уравнения . в' = (-(- 13) + 5) / 2*1 = (13 + 5) / 2 = 9 ; в" = (- (- 13) - 5) / 2 * 1 = (13 - 5) / 2 = 4 . Получили 2 действительных корня : 9 см и 4 см . Другая сторона прямоугольника будет соответственно равна : 4 см и 9см