сделайте все cрочно 1)Функцію задано формулою y=10/x . Яке значення функції відповідає значенню х= 0,2? При якому значенні аргументу значення функції дорівнює –5 2)оберненої пропорційності, заданої формулою y=-4/x . Знайдіть за графіком:(на картике) а. значення у, яке відповідає значенню х, що дорівнює –4; –2; –1; 1; 2; 4; б. значення х, якому відповідає значення у, що дорівнює –4; –2; –1; 1; 2; 4. 3)При яких значеннях k графік функції у=k/x проходить через точки: (1; 1) 4)Побудувати в одній системі координат графіки функцій y=6/x і y=5-x . За до цих графіків назвати корені рівняння 6/x=5-x. При яких значеннях k і b гіпербола y=k/x і пряма у= kx + b проходять через точку А(3; 4)?
При x≤-1 - функция положительная При -1≤x≤4 - функция отрицательная При x≥4 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4 ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная При -6≤x<10 - функция отрицательная При x>10 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная): x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
При x≤-1 - функция положительная При -1≤x≤4 - функция отрицательная При x≥4 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4 ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная При -6≤x<10 - функция отрицательная При x>10 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная): x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
-1≤x≤4/3
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
-1≤x≤4/3