В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
axinoffdaniil
axinoffdaniil
16.04.2023 18:27 •  Алгебра

схематически изобразите график функции y=x^-3 и перечислите ее основные свойства. пользуясь свойствами этой функции, сравните:

Показать ответ
Ответ:
katerinaplachet
katerinaplachet
16.01.2024 12:29
Добрый день! Конечно, я готов вам помочь с этим вопросом. Начнём с построения графика функции y=x^-3.

1) Схематическое изображение графика функции y=x^-3:
Для построения графика нам нужно взять несколько значений x и вычислить соответствующие значения y. Давайте возьмём x равное -2, -1, 0, 1 и 2:

Подставим эти значения в функцию y=x^-3:
- При x=-2: y=(-2)^-3 = -1/(-2)^3 = -1/(-8) = 1/8
- При x=-1: y=(-1)^-3 = -1/(-1)^3 = -1/(-1) = 1
- При x=0: y=(0)^-3 = Неопределённое значение (0 в знаменателе)
- При x=1: y=(1)^-3 = 1/(1)^3 = 1
- При x=2: y=(2)^-3 = 1/(2)^3 = 1/8

Теперь мы имеем набор значений для построения графика:
(-2, 1/8), (-1, 1), (0, неопределено), (1, 1), (2, 1/8)

Теперь нарисуем точки для этих значений на координатной плоскости и соединим их линией:

|
| (1/8)
|
________|_______
|
|
|
|
|

-2 -1 0 1 2
Это и есть график функции y=x^-3.

2) Основные свойства функции y=x^-3:
- Функция y=x^-3 обладает асимптотой y=0 на оси x, поскольку значение функции стремится к бесконечности, когда x приближается к нулю.
- Функция y=x^-3 всегда положительна, так как отрицательное число, возведённое в чётную степень, становится положительным.
- График функции y=x^-3 симметричен относительно оси y, так как знак минус в степени -3 не влияет на знак значения функции.
- Функция y=x^-3 является убывающей функцией, так как при увеличении x, значение функции уменьшается.
- У функции y=x^-3 есть две точки перегиба: одна между (0, неопределено) и (1, 1/2) и другая между (1, 1/2) и (2, 1/8).

3) Сравнение функции y=x^-3 с другими функциями:
- Если сравнить функцию y=x^-3 с функцией y=x^3, то можно видеть, что обе функции являются обратными друг другу. Это означает, что график функции y=x^3 можно получить, инвертируя (отражая) график функции y=x^-3 относительно прямой y=x.
- Если сравнить функции y=x^-3 и y=x, то видно, что функция y=x^-3 обладает асимптотой y=0 и является убывающей, в то время как функция y=x является линейной и не обладает асимптотами.

Я надеюсь, что эти пояснения и график помогли вам понять функцию y=x^-3 и её основные свойства. Если у вас остались какие-либо вопросы, не стесняйтесь задавать их!
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота