(а+1)во 2 степени-(2а+3)во 2 степени=0 Нужно раскрыть скобки по формулам сокращенного умножения Сначала раскроем (а+1)во второй степени,получится а в квадрате +2а+1 Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени -(4а в квадрате +12а+9 ) Раскроем скобки и получится -4а в квадрате -12а-9 В итоге получилось а в квадрате +2а+1-4а в квадрате -12а-9 Находим подобные и получается -3 а в квадрате -10 а -8=0 Теперь решаем дискриминантом Д(дискриминант)=корню из четырех ,то есть двум А1= -2 целые одна третья А2= -1
Второе уравнение решается аналогично 25 с в квадрате +80с +64 -с в квадрате +20с-100=0 Что-бы было удобней вычитать Д сократим все на два,и получится 6с в квадрате+25с-9=0 Д=корень из 841 =29 С1=1/3 С2=11/3=3 целых 2/3
Решение: Из теоремы Пифагора мы знаем, что в прямоугольном треугольнике: с^2=a^2+b^2, можно найти стороны катетов. Для этого один из катетов пусть будет обозначен а, а второй: b= а+2, подставим данные этой задачи и найдём катеты этого. 10^2=a^2+(a+2)^2 100=a^2+a^2+4a+4 Решим данное уравнение: 2a^2+4a-96=0 приведём это квадратное уравнение к простомц квадратному уравнению, разделив его на 2, a^2+2a-48=0 a1,2=-1+-sqrt(1+48)=-1+-7 a1=-1+7=6 a2=-1-7=-8 (не соответствует условию задачи) Второй катет b=6+2=8
Нужно раскрыть скобки по формулам сокращенного умножения
Сначала раскроем (а+1)во второй степени,получится
а в квадрате +2а+1
Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени
-(4а в квадрате +12а+9 )
Раскроем скобки и получится
-4а в квадрате -12а-9
В итоге получилось
а в квадрате +2а+1-4а в квадрате -12а-9
Находим подобные и получается
-3 а в квадрате -10 а -8=0
Теперь решаем дискриминантом
Д(дискриминант)=корню из четырех ,то есть двум
А1= -2 целые одна третья
А2= -1
Второе уравнение решается аналогично
25 с в квадрате +80с +64 -с в квадрате +20с-100=0
Что-бы было удобней вычитать Д сократим все на два,и получится
6с в квадрате+25с-9=0
Д=корень из 841 =29
С1=1/3
С2=11/3=3 целых 2/3
Из теоремы Пифагора мы знаем, что в прямоугольном треугольнике: с^2=a^2+b^2, можно найти стороны катетов. Для этого один из катетов пусть будет обозначен а, а второй: b= а+2, подставим данные этой задачи и найдём катеты этого.
10^2=a^2+(a+2)^2
100=a^2+a^2+4a+4
Решим данное уравнение:
2a^2+4a-96=0 приведём это квадратное уравнение к простомц квадратному уравнению, разделив его на 2,
a^2+2a-48=0
a1,2=-1+-sqrt(1+48)=-1+-7
a1=-1+7=6
a2=-1-7=-8 (не соответствует условию задачи)
Второй катет b=6+2=8
ответ: Длины катетов равны: 6; 8