Школьники занимаются прополкой огорода, который находится на пришкольном участке. Работают они с разной скоростью, а некоторые из них, как показывает практика, даже мешают общей работе, просто закапывая сорняки или перебрасывая их на участок соседа... Вчерашняя работа показала, что Вася и Алина выпалывают гряду за 22 мин, Алина и Николай выпалывают её же за 44 мин, Николай и Вася — за 66 мин.
За сколько минут выполнят эту работу все вместе?
ответ: втроём дети выполнят работу за ...
мин.
Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
для решения данного мы должны выяснить проходит ли график функции через точку с.
график функции
для того, чтобы выяснить проходит ли график функции через точку не обязательно выполнять построение графика. график функции проходит через точку, если координаты этой точки обращают формулу функции в верное числовое равенство. записи, в которых используется знак равно, разделяющий два объекта (два числа, выражения и т. называют равенствами. для того, чтобы выяснить проходит ли график функции через точку нужно:
подставить в формулу функции вместо у ординату точки с.
подставить в формулу функции вместо х абсциссу точки с.
если получится верное числовое равенство, точка лежит на графике.
вычислим принадлежит ли графику функции точка
график функции проходит через точку с, если их координаты обращают формулу y = -2x + 4 в верное числовое равенство. координаты точки с (20; -36), где абсцисса, то есть х =20, а ордината, то есть у = -36. подставим значения в формулу y = -2x + 4.
-36 = -2 * 20 + 4;
-36 = -40 + 4;
-36 = -36.
при умножении отрицательного числа на положительное мы получаем отрицательный результат.
так как обе части равны, значит мы получили верное равенство. следовательно точка с (20; -36) проходит через график функции y = -2x + 4.