Швидкість першого велосипедиста на 3 км/год більша за швидкість другого, тому 60 км він проїжджає на 1 год швидше, ніж другий велосипедист. Знайдіть швидкість кожного велосипедиста.
Считаем корни через Дискриминант и получаем t=1.6 и t =1/2 ,
t=1.6 не удовлетворяет заданному условию (-1<=t<=1)
остаётся t=1/2
sinx=1/2
x=п/6 +2пk, k принадлежичит Z
x=5п/6 +2пk, k принадлежит Z.
ответ:{п/6 +2пk;5п/6 +2пk}
2)
Такие площади находятся с интегралов.
Сначала тебе нужно взять и приравнять функцию к нулю чтобы посмотреть в каких точках график пересекает ось x
Найдешь их через дискриминант.
Та точка что будет правее это будет правой границей
А левой границей у нас будет 0, так как ограничена фигура осью y
Ищешь первообразную(надеюсь что ты умеешь это делать, если не умеешь то первообразная тут будет такая y=(x^3)/3+3x^2+9x)
Далее берешь интеграл с этой функцией( y=(x^3)/3+3x^2+9x)) с ограничениями 0 и правая граница( которую ты найдешь приравняв первоначальную функцию к нулю)
И считаешь интеграл, Подставляешь в нашу первообразную сначала верхнуюю границу(вместо x) и отнимаешь от всего этого другую границу(0)
Получаешь ответ.
Надеюсь что понятно объяснил, я бы расписал, но без понятия как обозначается интеграл в тексте.
1) 5cos2x+21sinx =13 (формула cos2x=1-2sinx^2)
5(1-2sinx^2)+21sinx=13
5-10sinx^2+21sinx=13
10sinx^2-21sinx+8=0
Пусть sinx =t , причем -1<=t<=1
Получается квадратное уравнение
10t^2-21t+8=0
Считаем корни через Дискриминант и получаем t=1.6 и t =1/2 ,
t=1.6 не удовлетворяет заданному условию (-1<=t<=1)
остаётся t=1/2
sinx=1/2
x=п/6 +2пk, k принадлежичит Z
x=5п/6 +2пk, k принадлежит Z.
ответ:{п/6 +2пk;5п/6 +2пk}
2)
Такие площади находятся с интегралов.
Сначала тебе нужно взять и приравнять функцию к нулю чтобы посмотреть в каких точках график пересекает ось x
Найдешь их через дискриминант.
Та точка что будет правее это будет правой границей
А левой границей у нас будет 0, так как ограничена фигура осью y
Ищешь первообразную(надеюсь что ты умеешь это делать, если не умеешь то первообразная тут будет такая y=(x^3)/3+3x^2+9x)
Далее берешь интеграл с этой функцией( y=(x^3)/3+3x^2+9x)) с ограничениями 0 и правая граница( которую ты найдешь приравняв первоначальную функцию к нулю)
И считаешь интеграл, Подставляешь в нашу первообразную сначала верхнуюю границу(вместо x) и отнимаешь от всего этого другую границу(0)
Получаешь ответ.
Надеюсь что понятно объяснил, я бы расписал, но без понятия как обозначается интеграл в тексте.
3c-4d 3c+4d
( - )
4c-3d 4c+3d
12c^2 +9cd -16 cd -12d^2
(4c-3d ) ( 4c+3d) (по формуле (a+b) (a-b) =a^2 - b^2) 12c^2 -7 cd -12d^2 14 (4c-3d ) ( 4c+3d) : 4c+ 3d 12c^2 -7 cd -12d^2 (умножить на) 4c+3d (4c-3d ) ( 4c+3d) 14 (сокращаем) 12c^2 -7 cd -12d^2 4c^2-2cd 14 (4c-3d ) + 4c-3d (общий знаменатель 14 (4c-3d ). 4c-3d - домножим на 14) 12c^2 -7 cd -12d^2 +56с^2 -28cd =0 68c^2 -35cd -12d^2 =0 (под вечер мозг взорвался и был таков)