В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Maykaktys
Maykaktys
27.10.2021 09:38 •  Алгебра

Sin^3xcosx-cos^3xsinx=0.25. решить,заранее !

Показать ответ
Ответ:
Ofsi
Ofsi
08.10.2020 12:42
Используем следующие формулы:
формула синуса двойного аргумента: sin2x=2sinx·cosx (*)
формула косинуса двойного аргумента cos2x=cos²x-sin²x (**)
sin³x·cosx-cos³x·sinx=0.25 Умножим на 4, получим:
4·(sin³x·cosx-cos³x·sinx)=1 
4·(sin²x·sinx·cosx-cos²x·cosx·sinx)=1
 4·sinx·cosx·(sin²x-cos²x)=1
2·2·sinx·cosx·(sin²x-cos²x)=1 Вот, теперь используем формулы (*) и(**):
-2·sin2x·cos2x=1       Еще раз используем формулу (*):
-sin4x=1
sin4x=-1
4x=-П/2+2Пk, k∈Z
x=-П/8+Пk/2, k∈Z
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота