Смотри это линейные неравенства Алгоритм решения подобной системы прост:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
а квадратных неравенств Алгоритм решения этой системы абсолютно аналогичен алгоритму при решении системы линейных неравенств:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
Перенумеруем все города. Для городов i, j направим дорогу из города с меньшим номером в город с большим номером. Тогда при проезде по дорогам мы всегда приезжаем в города с большими номерами, и обратно не возвращаемся.
Из города 1 можно добраться до всех, а из n нельзя выехать. Единственный путь, проходящий все города -- это 1-2-...-n.
Теперь надо показать, что такая конструкция всего одна с точностью до перенумерации городов. Из этого будет следовать, что её осуществить ровно n!.
Для начала можно доказать, что имеется город, из которого нельзя выехать. В противном случае мы можем бесконечно долго путешествовать, и какие-то посещаемые города при этом повторятся. Это значит, что основное условие нарушается. Городу с таким свойством присвоим значение n. Он всего один, так как из остальных городов идут стрелки в n.
Далее применяем индукцию, отбрасывая город n и стрелки в него. Для оставшихся городов формируется (по предположению) единственная нумерация 1,2,...,n-1 такая, что из i в j идёт стрелка <=> i < j. Поскольку n больше всех остальных чисел, после возвращения n-го города на место всё сохранится.
Можно и без индукции. Для каждого города рассмотрим путь максимальной длины по стрелкам, оканчивающийся в данном городе. Длину такого пути ему и сопоставим. Значения могут приниматься от 0 до n-1. При этом они не повторяются: если для двух городов значения равны k, то из одного из них попадаем по ребру в другой, что увеличивает длину до k+1. Таким образом, все значения используются ровно по разу. Увеличивая их на 1, имеем описанную выше нумерацию. Ясно также, что ребро всегда идёт из i в j только при i < j.
Алгоритм решения подобной системы прост:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
а квадратных неравенств
Алгоритм решения этой системы абсолютно аналогичен алгоритму при решении системы линейных неравенств:Решить первое неравенство, найти его промежутки значений.Решить второе неравенство, найти промежутки значений второго неравенства.Найти пересечение двух множеств значений
.
Объяснение:
0
Перенумеруем все города. Для городов i, j направим дорогу из города с меньшим номером в город с большим номером. Тогда при проезде по дорогам мы всегда приезжаем в города с большими номерами, и обратно не возвращаемся.
Из города 1 можно добраться до всех, а из n нельзя выехать. Единственный путь, проходящий все города -- это 1-2-...-n.
Теперь надо показать, что такая конструкция всего одна с точностью до перенумерации городов. Из этого будет следовать, что её осуществить ровно n!.
Для начала можно доказать, что имеется город, из которого нельзя выехать. В противном случае мы можем бесконечно долго путешествовать, и какие-то посещаемые города при этом повторятся. Это значит, что основное условие нарушается. Городу с таким свойством присвоим значение n. Он всего один, так как из остальных городов идут стрелки в n.
Далее применяем индукцию, отбрасывая город n и стрелки в него. Для оставшихся городов формируется (по предположению) единственная нумерация 1,2,...,n-1 такая, что из i в j идёт стрелка <=> i < j. Поскольку n больше всех остальных чисел, после возвращения n-го города на место всё сохранится.
Можно и без индукции. Для каждого города рассмотрим путь максимальной длины по стрелкам, оканчивающийся в данном городе. Длину такого пути ему и сопоставим. Значения могут приниматься от 0 до n-1. При этом они не повторяются: если для двух городов значения равны k, то из одного из них попадаем по ребру в другой, что увеличивает длину до k+1. Таким образом, все значения используются ровно по разу. Увеличивая их на 1, имеем описанную выше нумерацию. Ясно также, что ребро всегда идёт из i в j только при i < j.