Для того чтобы показать, что число является составным достаточно показать, что оно у него есть делители помимо 1 и самого себя. Для начала надо понять на какое число заканчивается . Для этого нужно понять на какую цифру заканчиваются степени двойки:
Таким образом последняя цифра в степенях двойки может быть только из множества {2, 4, 8, 6}, которое будет циклически повторяться. Дальше надо понять остаток от деления 1234 на 4. 1234 : 4 = 308 и остаток 2. Значит последния цифра у нас совершит 308 полных циклов и еще 2 шага. Таким образом число заканчивается на цифру 4. Следовательно заканчивается на цифру 5, а значит это число делится на 5 и как факт является составным.
Объяснение:
Для того чтобы показать, что число является составным достаточно показать, что оно у него есть делители помимо 1 и самого себя. Для начала надо понять на какое число заканчивается . Для этого нужно понять на какую цифру заканчиваются степени двойки:
Таким образом последняя цифра в степенях двойки может быть только из множества {2, 4, 8, 6}, которое будет циклически повторяться. Дальше надо понять остаток от деления 1234 на 4. 1234 : 4 = 308 и остаток 2. Значит последния цифра у нас совершит 308 полных циклов и еще 2 шага. Таким образом число заканчивается на цифру 4. Следовательно заканчивается на цифру 5, а значит это число делится на 5 и как факт является составным.
если у=0, то -5x^2+2x=0
5x^2-2x=0
x(5x-2)=0
x1=0 x2=0,4 (0;0),(0,4;0)
2) если х=0,то у= -2 (0;-2)
если у=0,то 21x^2-x-2=0
D=1+168=169
x1= 1-13/42= -12/42=-2/7
x2=1+13/42=14/42=1/3 (-2/7;0), (1/3;0)
3)если х=0,то у=14 (0;14)
если у=0,то -6x^2+17x+14=0
6x^2-17x-14=0
D=289+336=625
x1=17-25/12= -8/12= -2/3
x2=17+25/12=42/12=3,5 (-2/3;0),(3,5;0)