В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
katrinsweet
katrinsweet
17.05.2023 00:47 •  Алгебра

Sin15°cos7°-cos11°cos79°-sin4°sin86°

Показать ответ
Ответ:
epakurtdinova
epakurtdinova
28.10.2020 09:22

по примеру реши.

  x^3 - 6x^2 + 11x - 6 = 0 можно, конечно, решить формулой кардано для решения кубических уравнений, но это долго и трудно. проще подобрать корни схемой горнера. возможные рациональные корни x = a/b, где а - делитель свободного члена, b - делитель старшего коэффициента. x = 1, -1, 2, -2, 3, -3, 6, -6 находишь значения в этих точках. y(1) = 1 - 6 + 11 - 6 = 0 - повезло сразу! теперь раскладываем: x^3 - x^2 - 5x^2 + 5x + 6x - 6 = 0 (x - 1)(x^2 - 5x + 6) = 0 (x - 1)(x - 2)(x - 3) = 0 ответ: x1 = 1, x2 = 2, x3 = 3

0,0(0 оценок)
Ответ:
shok0
shok0
06.05.2020 11:02

(\frac{1}{2}; -3\frac{1}{2}), \quad (2; 1);

Объяснение:

\left \{ {{3x-y=5} \atop {3x^{2}+y^{2}=13}} \right. ;

Выражаем из верхнего уравнения переменную "у":

\left \{ {{y=3x-5} \atop {3x^{2}+y^{2}=13}} \right. ;

Подставляем полученное выражение в нижнее уравнение вместо "у":

\left \{ {{y=3x-5} \atop {3x^{2}+(3x-5)^{2}=13}} \right. ;

Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:

(a-b)^{2}=a^{2}-2ab+b^{2};

(3x-5)^{2}=(3x)^{2}-2 \cdot 3x \cdot 5+5^{2}=3^{2} \cdot x^{2}-30x+25=9x^{2}-30x+25;

\left \{ {{y=3x-5} \atop {3x^{2}+9x^{2}-30x+25=13}} \right. ;

Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:

\left \{ {{y=3x-5} \atop {(3+9) \cdot x^{2}-30x+25=13}} \right. ;

Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:

\left \{ {{y=3x-5} \atop {12x^{2}-30x+25-13=0}} \right. ;

Выполним вычитание:

\left \{ {{y=3x-5} \atop {12x^{2}-30x+12=0}} \right. ;

Разделив все части нижнего уравнения на 6, получим:

\left \{ {{y=3x-5} \atop {2x^{2}-5x+2=0}} \right. ;

Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:

\left \{ {{y=3x-5} \atop {x^{2}-2\frac{1}{2}x+1=0}} \right. ;

Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:

\left \{ {{x_{1}+x_{2}=-(-2\frac{1}{2})} \atop {x_{1} \cdot x_{2}=1}} \right. ;

Минус перед скобкой и минус после скобки дают плюс:

\left \{ {{x_{1}+x_{2}=2\frac{1}{2}} \atop {x_{1} \cdot x_{2}=1}} \right. ;

Корнями этой системы являются числа 1/2 и 2.

Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:

\left \{ {{y=3 \cdot \frac{1}{2}-5} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{y=\frac{3}{2}-\frac{10}{2}} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{y=-\frac{7}{2}} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{x=\frac{1}{2}} \atop {y=-3\frac{1}{2}}} \right. ;

\left \{ {{y=3 \cdot 2-5} \atop {x=2}} \right. \Leftrightarrow \left \{ {{y=6-5} \atop {x=2}} \right. \Leftrightarrow \left \{ {{x=2} \atop {y=1}} \right. ;

Мы получили две пары корней:

(\frac{1}{2}; -3\frac{1}{2}), \quad (2; 1);

Они являются решениями системы.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота