Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел и – среднеарифметическое равно и при этом на меньше двадцати пяти и на больше семнадцати.
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
Нет, не пересекает
Объяснение:
Найти в каких точках график(в данном случае парабола) пересекает оси и пересекает ли вообще, можно найти двумя
1) Начертить график
Долгий даже если изображать схематично
(Но если коэфицент у x² небольшой, до 3, то можно попробовать)
2) Подставить под каждую неизв. переменную ноль
Вот это уже легче и быстрее
При пересечении с ось x y равен нулю
Это законное правило, и по-другому быть не может
Поэтому нужно вместо y подставить ноль
Получится выражение:
x²- x + 12 = 0
Это квадратное уравнение
Здесь будет проще решить через теорему виета
Но сначала стоит проверить, чему равен дискриминант
D = b²-4ac
Подставляем:
D = (-1)² - 4 * 1 * 12
D = -47
Чётного корня из отрицательного числа НЕ СУЩЕСТВУЕТ
Поэтому y НИКОГДА НЕ будет равен нулю
Следовательно: График НЕ пересекает ось x
Поэтому здесь один из вариантов:
Либо ветви параболы вниз
Либо вершина параболы выше оси x
ЗДесь второй случай, так как старший коэфицент a - положительный
А значит ветви направлены вверх
P.s. Если нужно найти пересекает ли график ось y, то просто подставь вместо x ноль
Если что-то не понятно, пиши - отвечу
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
О т в е т : (Г)