Скільки різних шестицифрових чисел можна записати за до цифр 1, 2, 3, 4, 5, 6, 7, 8 так, щоб цифри не повторювалися, а друга й третя цифри були непарними?
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Найдём уравнение прямой, проходящей через точки (-3; 0) и (-1; 3).
(х + 3)/(-1 + 3) = (у -0)/(3 - 0)
3(х + 3) = 2у
у = 1,5х + 4,5
Найдём точки пересечения этой прямой с осью Ох
у = 0;
1,5х + 4,5 = 0
х = -3
парабола у = 3х касается оси Ох в точке х = 0.
Найдём точки пересечения параболы у = 3х² и прямой у = 1,5х + 4,5
3х² = 1,5х + 4,5
3х² - 1,5х - 4,5 = 0
2х² - х - 3 = 0
D = 1 + 24 = 25
x1 = (1 - 5)/4 = -1
x2 = (1 + 5)/4 = 1.5
Изобразим графики, заданные уравнениями параболы и прямой.
Смотри рисунок на прикреплённом файле.
Очевидно, что фигура, заключённая между параболой, наклонной прямой и осью Ох, представляет собой криволинейный треугольник. Причем левая половина этого треугольника ограничена наклонной прямой и осью Ох, а правая половина - параболой и осью Ох. Соответственно, и интегралов будет два
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
S = 4
Объяснение:
Найдём уравнение прямой, проходящей через точки (-3; 0) и (-1; 3).
(х + 3)/(-1 + 3) = (у -0)/(3 - 0)
3(х + 3) = 2у
у = 1,5х + 4,5
Найдём точки пересечения этой прямой с осью Ох
у = 0;
1,5х + 4,5 = 0
х = -3
парабола у = 3х касается оси Ох в точке х = 0.
Найдём точки пересечения параболы у = 3х² и прямой у = 1,5х + 4,5
3х² = 1,5х + 4,5
3х² - 1,5х - 4,5 = 0
2х² - х - 3 = 0
D = 1 + 24 = 25
x1 = (1 - 5)/4 = -1
x2 = (1 + 5)/4 = 1.5
Изобразим графики, заданные уравнениями параболы и прямой.
Смотри рисунок на прикреплённом файле.
Очевидно, что фигура, заключённая между параболой, наклонной прямой и осью Ох, представляет собой криволинейный треугольник. Причем левая половина этого треугольника ограничена наклонной прямой и осью Ох, а правая половина - параболой и осью Ох. Соответственно, и интегралов будет два