Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение:
1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
Пусть скорость течения реки х км/ч
Тогда собственная скорость катера 4х
Время, которое катер плыл против течения до встречи с плотом, примем за у.
S = v t, где S - расстояние, v - скорость, t -время.
До встречи с плотом катер проплыл против течения и у(4х-х)=3ху
а плот за то же время
ху
Расстояние от А до В равно
3ху + ху=4ху
По терчению от места встречи с плотом до пункта В катер плыл со скоростью
4х+х=5х и затратил
3ху:5х= 3/5 у часов или 0,6 у часов
За это же время плот проплыл 0,6 ху
Всего с момента отправления из пункта А до времени прибытия катера в В плот пройдет
ху+0,6 ху=1, 6 ху
Это расстояние составляет от всего расстояния от А до В
1,6ху:4ху=0.4 часть или 2/5
ответ: К моменту возвращения катера в пункт В плот пройдет 2/5 пути от А до В.
Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение:
1/10 - производительность труда Ивана.
1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.