1. а) у=-1/х+2 Если читать как написано, то х≠0, или что то же самое, что х∈(-∞;0)∪(0;+∞); если подразумевалась такая запись у=1/(х+2), то х≠-2, и тогда х∈(-∞;-2)∪(-2;+∞)
б)у= х+3/√х, х>0, т.к. корень четной степени не может быть отрицательным, а ноль отбрасываем, т.к. на нуль делить нельзя. Тогда получаем х∈(0;+∞)
в)у=sinx/√(3х), аналогичная б) ситуация. х∈(0;+∞), т.к. 3>0, х>0
2. а) областью определения функции служит любое действительное число, но у(-х)=4х+1; у(-х)≠у(х), поэтому функция не является четной, у(-х)≠-у(х), поэтому функция не является нечетной.
б) y(х)=-sin(1/x+2); если х+2 стоит в знаменателе под единицей, т.е. 1/(х+2), то исследовать на четность, или нечетность нет смысла, т.к. область определения функции не симметрична относительно начала отсчета, а если y(х)=-sin((1/(x))+2), то функция тоже не является ни четной, ни нечетной, т.к. у(-х)=-(sin((1/(-x))+2)=sin((1/(x))-2), получаем, то у(-х)≠у(х);т.е. не является четной, у(-х)≠-у(х), т.е. не является нечетной.
в) у=(х+1)²+2-осью симметрии графика этой функции - параболы- является прямая х=-1, а не ось оу, тогда функция была бы четной, но она не является и нечетной, т.к. у(-х)= (-х)²-2х+3=х²-2х+3≠-у(х)
Вывод: все рассмотренные функции не являются ни четными, ни нечетными, это функции общего вида.
Триганометрические, составитель ошибся
а)sin x = ✓3/2
x = (-1)ⁿ π/3 + πn
б)cos x = -3/5
x = ±arccos(-3/5) + 2πk
x = ±(π-arccos(3/5)+2πk
в)2cos²x+cosx - 1 = 0
cos x = t
2t²+t-1 = 0
Так как a-b+c = 0(2-1-1 = 0):
t1 = -1
t2 = -c/a = 1/2
1)cos x = -1
x = π+2πn
2)cos x = 1/2
x = ±π/3 + 2πn
г)sinx + sin 3x + sin 5x = 0
sin3x + sin5x + sinx = 0
sin3x + 2sin3x • cos2x = 0
sin3x(1+2cos2x) = 0
1)sin 3x = 0
3x = πk
x = π/3 k
2)1+2cos2x = 0
2cos2x = -1
cos2x = -1/2
2x = ±(π-arccos(1/2) + 2πk
x = ±1/2(π-π/3)+πk
x = ±1/2(2π/3)+πk
x = ±π/3 + πk
1. а) у=-1/х+2 Если читать как написано, то х≠0, или что то же самое, что х∈(-∞;0)∪(0;+∞); если подразумевалась такая запись у=1/(х+2), то х≠-2, и тогда х∈(-∞;-2)∪(-2;+∞)
б)у= х+3/√х, х>0, т.к. корень четной степени не может быть отрицательным, а ноль отбрасываем, т.к. на нуль делить нельзя. Тогда получаем х∈(0;+∞)
в)у=sinx/√(3х), аналогичная б) ситуация. х∈(0;+∞), т.к. 3>0, х>0
2. а) областью определения функции служит любое действительное число, но у(-х)=4х+1; у(-х)≠у(х), поэтому функция не является четной, у(-х)≠-у(х), поэтому функция не является нечетной.
б) y(х)=-sin(1/x+2); если х+2 стоит в знаменателе под единицей, т.е. 1/(х+2), то исследовать на четность, или нечетность нет смысла, т.к. область определения функции не симметрична относительно начала отсчета, а если y(х)=-sin((1/(x))+2), то функция тоже не является ни четной, ни нечетной, т.к. у(-х)=-(sin((1/(-x))+2)=sin((1/(x))-2), получаем, то у(-х)≠у(х);т.е. не является четной, у(-х)≠-у(х), т.е. не является нечетной.
в) у=(х+1)²+2-осью симметрии графика этой функции - параболы- является прямая х=-1, а не ось оу, тогда функция была бы четной, но она не является и нечетной, т.к. у(-х)= (-х)²-2х+3=х²-2х+3≠-у(х)
Вывод: все рассмотренные функции не являются ни четными, ни нечетными, это функции общего вида.