Чтобы записать формулу линейной функции, которая проходит через начало координат и параллельна прямой заданной уравнением у = 9х - 3 вспомним определение линейное функции.
Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
Коэффициент b показывает смещение графика функции вдоль оси OY:
• если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
• если b<0, то график функции y=kx+b получается из графика функции y=kx сдвигом на b единиц вниз вдоль оси OY
Чтобы график проходил через начала координат b должно равняться нулю.
Рассмотрим функцию
Её область определения:
Приравниваем функцию к нулю:
Произведение равно нулю, если один из множителей равен нулю
На интервале найдем решение неравенства
_+___(-2)___-___(0)___-___(2)___+___
Решением неравенства есть промежуток -
Целое отрицательное число из промежутка: -1
ответ: -1.
При умножении неравенства на отрицательное число, знак неравенства меняется на противоположный
Целые отрицательные числа промежутка: -3; -2; -1.
ответ: -3; -2; -1.
Рассмотрим функцию
Область определения:
Приравниваем функцию к нулю:
Дробь обращается в 0 тогда, когда числитель равен нулю
По т. Виета:
Найдем решение неравенства
___+___(-1)___-____(0)____-__(2)____+____
- решение неравенства
Целых отрицательных чисел - НЕТ
ответ: целых отрицательных чисел нет
Рассмотрим функцию
Область определения функции:
Приравниваем функцию к нулю
Дробь обращается в нуль, если числитель равен нулю
Вычислим решение неравенства:
__+___(-√3)__-__[-1]__+___[0]___-__(√3)__+____
Решение неравенства:
Целые отрицательные решения : -1
ответ: -1.
Чтобы записать формулу линейной функции, которая проходит через начало координат и параллельна прямой заданной уравнением у = 9х - 3 вспомним определение линейное функции.
Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
Коэффициент b показывает смещение графика функции вдоль оси OY:
• если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
• если b<0, то график функции y=kx+b получается из графика функции y=kx сдвигом на b единиц вниз вдоль оси OY
Чтобы график проходил через начала координат b должно равняться нулю.
у = 9х.
ответ: у = 9х.
Объяснение: