Пусть A - объём работы, которую предстоит выполнить. Пусть t ч - время, за которое может выполнить эту работу один фотограф и t+2 ч - второй фотограф. Тогда за 1 час один фотограф выполняет A/t часть работы, а другой фотограф - A/(t+2) часть работы. Работая же вместе, они за 1 час выполняют A/t+A/(t+2) часть работы. По условию, [A/t+A/(t+2)]*15/8=A. Сокращая на A, приходим к уравнению [1/t+1/(t+2)]*15/8=1, которое приводится к квадратному уравнению 4*t²-7*t-15=0. Это уравнение имеет решения t1=3 ч и t2=-1,25 ч. Но так как t>0, то t=3 ч. Тогда t+2=5 ч. ответ: 3 ч и 5 ч.
По условию задачи имеем две неизвестных переменных, переменная t=времени,пер-
еменная х=скорости течения реки.Составим систему линейных уравнений с двумя
переменными.
10t+xt=70 1 уравнение системы ,показывает сколько лодка по течению.
10t-xt=30 2 уравнение системы показывает сколько лодка против.
Решим систему уравнений сложения.xt и -xt противоположные числа при
сложении дают 0. Сложим почленно каждый член 1 ур с чл 2 ур получим
20t=100 выразим t, t=100:20=>t=5; Решим 2 уравнение с 1 переменной
10*5-5x=30,=>50-5x=30,=>-5х=30-50,=>-х=-20:5,=>-х=-4 значит х=4.
ответ:скорость течения реки равна 4 км/ч,а время 5 часам.