Решение Пусть скорость первого лыжника будет х (км/ч). Тогда скорость второго лыжника (х+2) (км/ч). Время первого лыжника 20/х (км/ч), а второго 20/(х+2) (км/ч); а так как второй расстояние на 20мин, т.е. на 1/3 часа быстрее, то имеем уравнение такого вида: 20/x – 20/(x + 2) = 1/3 20/x – 20/(x + 2) - 1/3 = 0 умножим на 3 60/x – 60/(x + 2) – 1 = 0 60(х+2) - 60х – x*(x + 2) = 0 х² + 2x – 120 = 0 D=b² - 4ac = 4 + 4*1*120 = 484 x= (- 2 + 22)/2 = 10 10 (км/ч) - скорость первого лыжника 10 + 2 = 12 (км/ч) — скорость второго лыжника ответ: 10 км/ч; 12 км/ч
1) Матрица линейного оператора выглядит следующим образом
α₁₁ α₁₂
α₂₁ α₂₂
Составим соответствующие уравнения после действия этого оператора
5α₁₁+4α₁₂=11
5α₂₁+4α₂₂=25
4α₁₁-3α₁₂=-16
4α₂₁-3α₂₂=-11
Решая систему находим элемениы матрицы
α₁₁=-1 α₁₂=4
α₂₁= 1 α₂₂=5
ответ: 9
2) Составим матрицу оператора
1 7 8
-5 -1 8
-2 -4 1
Транспонируем ее
1 -5 -2
7 -1 -4
8 8 1
ответ: 17
3) Решим соответствующее характеристическое уравнение
Для всех собственных значений найдем собственные вектора
-x₁+3x₂=0
x₁=1 x₂=1/3
-3x₁+4x₂=0
x₁=1 x₂=3/4
ответ: 13/12
4) x₁²+4x₁x₂+4x₁x₃+29x₂²+38x₂x₃+17x₃²=(x₁+2x₂+2x₃)²+(5x₂+3x₃)²+4x₃²=a₁²+a₂²+4a³₂
ответ: 6
Пусть скорость первого лыжника будет х (км/ч). Тогда скорость второго лыжника (х+2) (км/ч).
Время первого лыжника 20/х (км/ч), а второго 20/(х+2) (км/ч);
а так как второй расстояние на 20мин, т.е. на 1/3 часа быстрее,
то имеем уравнение такого вида:
20/x – 20/(x + 2) = 1/3
20/x – 20/(x + 2) - 1/3 = 0 умножим на 3
60/x – 60/(x + 2) – 1 = 0
60(х+2) - 60х – x*(x + 2) = 0
х² + 2x – 120 = 0
D=b² - 4ac = 4 + 4*1*120 = 484
x= (- 2 + 22)/2 = 10
10 (км/ч) - скорость первого лыжника
10 + 2 = 12 (км/ч) — скорость второго лыжника
ответ: 10 км/ч; 12 км/ч