Скоротіть дріб:
Вказівка:(окремо чисельник прирівняйте до 0, розв’яжіть отримане рівняння, знайдіть корені х1, х2 і розкладіть за зразком а*(х- х1)*(х- х2), де а- коефіцієнт перед х, а х1, х2 – корені квадратного рівняння. Але у даних прикладах знаменник розкладаєте винесення за дужки та застосовуючи формули скороченого множення).
а) (6х^(2 )- 5х+1)/(4х+ 2) ; б) (4х^(2 )+11х-3)/(4х^2- 36) .
1) х принадлежит (-бесконечность, 1] или [ 2,1+sqrt(3))
2) х принадлежит
(-бесконечность, 2-sqrt(5)) или (2+sqrt(5),+бесконечность)
Объяснение:
1) ОДЗ: x^2-x-2>=0
При этом условии х>x^2-x-2
3>x^2-2x+1
3>(x-1)^2
1-sqrt(3) <x<1+sqrt(3)
Вернемся к ОДЗ
(x-0,5)^2>=1,5^2
x>=2 или x<=-1
Из пересечения областей решений и ОДЗ вытекает
х x<=-1 или 2=<x<1+sqrt(3)
х принадлежит (-бесконечность, 1] или [ 2,1+sqrt(3))
2) ОДЗ
x^2-3x+2 >=0
x^2-3x+2,25 >=0,5^2
x>=2 или x<=1
тогда
x^2-3x+2 >х+3
x^2-4x+4 >5
x>=2+sqrt(5) или х=<2-sqrt(5)
х принадлежит
(-бесконечность, 2-sqrt(5)) или (2+sqrt(5),+бесконечность)
Решаем полное квадратное уравнение x^2 - 5x + 6 = 0 с нахождения дискриминанта.
Вспомним формулу для нахождения дискриминанта:
D = b^2 - 4ac;
Найдем дискриминант для заданного уравнения.
D = (-5)^2 - 4 * 1 * 6 = 25 - 24 = 1;
Дискриминант найден перейдем к нахождению корней.
x1 = (-b + √D)/2a = (5 + √1)/2 * 1 = (5 + 1)/2 = 6/2 = 3;
x2 = (-b - √D)/2a = (5 - √1)/2 * 1 = (5 - 1)/2 = 4/2 = 2;
Корни найдены. Сделаем проверку:
1) 3^2 - 5 * 3 + 6 = 0;
9 - 15 + 6 = 0;
0 = 0;
2) 2^2 - 5 * 2 + 6 = 0;
4 - 10 + 6 = 0;
0 = 0.