Запишем условия: Ширина нам неизвестна, поэтому её мы возьмём за 'X' Длина на 10 больше ширины, значит на 10 больше 'X' Ширина - x Длина - x+10 S(площадь)=24см Чтобы решить эту задачу, составим простое уравнение. S(площадь)=длина*ширина 24 = (x+10)*x 24=x^2+10X x^2+10x-24=0 D=b^2-4ac=196
x1=-12 x2=2
У нас получилось два корня, но -12 нам не подходит, потому что ширина прямоугольника не может быть отрицательной. Следовательно, ширина прямоугольника равна 2.
Первое задание:
1)3х^2 - х^3.
2•3х-3х^2
6х-3х^2
2) 4х^2+6х+3
2•4х+6
8х+6
3) Есть два решения:
(3х^2+1)(3х^2-1).
Расписываем по формуле умножения:
(3х^2+1)’(3х^2-1)+(3х^2+1)(3х^2-1)’
Берём производную:
(2•3х)(3х^2-1)+(3х^2+1)(2•3х)
(6х)(3х^2-1)+(3х^2+1)(6х)
(18х^3 - 6х)+(18х^3 + 6х)
18х^3-6х+18х^3+6х
18х^3+18х^3
36х^3
Второй вариант - изначально увидеть формулу умножения и упростить. Но ответ одинаковый.
4) Очень не удобно через телефон, ибо деление. Если никто не решит - скажешь отправлю фотку решения.
Второе задание:
у = 1-6х^3
у’ = -3•6х^2
у’= -18х^2
у’(х0) = -18•8^2 = -1152
Третье задание:
s(t) = 2,5t^2+1,5t
s(t)’ = V(t)
s(t)’ = 2•2,5t+1,5
s(t)’ = 5t+1,5
V(t)=5t+1,5
V(4)=5•4+1,5=21,5.
ответ: 21,5.
Четвёртое задание так же по формуле деления, с телефона не удобно, по этому если никто не решит - напишешь
Ширина нам неизвестна, поэтому её мы возьмём за 'X'
Длина на 10 больше ширины, значит на 10 больше 'X'
Ширина - x
Длина - x+10
S(площадь)=24см
Чтобы решить эту задачу, составим простое уравнение.
S(площадь)=длина*ширина
24 = (x+10)*x
24=x^2+10X
x^2+10x-24=0
D=b^2-4ac=196
x1=-12
x2=2
У нас получилось два корня, но -12 нам не подходит, потому что ширина прямоугольника не может быть отрицательной. Следовательно, ширина прямоугольника равна 2.
X=2 (Ширина)
X+10=2+10=12 (Длина)
Ширина - 2 см
Длина - 12 см