СОЧ ПО АЛГЕБРЕ При каких значениях переменной алгебраическая дробь x^2+3/x-6
2. Сократите дробь а) 8b^2/16b б)x^2-4/2x-4
3. Выполните сложение и вычитание дробей: а) 1/3а+2/а б) 3b/b-2-2b+3/b-2
4. Выполните умножение и деление алгебраических дробей: a) 14а^2/b^2*b2/7a^3 b) ab+b^2/9:b^2/3a
2
3
2x³-3x²-11x+6 |x-3
2x³-6x² 2x^2+3x-2
---------------
3x²-11x
3x²-9x
-----------------
-2x+6
-2x+6
---------------
0
x=-2 2*4+3*(-2)-2=8-6-2=0
4
15^9 оканчивается на 5
26^9 оканчивается на 6
39^9
в 1 оканчивается на 9
во 2 оканчивается на 1
в 3 оканчивается на 9
.............................................
в 9 оканчивается на 9 (в нечетной степени)
5+6+9=20,значит оканчивается на 0
5
99^9 оканчивается на 9, значит (99^99)^9 оканчивается на 9 (см 4)
6
x^4+6x³+3x²+ax+b |x²+4x+3
x^4+4x³+3x² x²+2x-8
----------------------
2x³+ +ax
2x²+8x²+6x
----------------------------
-8x²+(a-6)x+b
-8x²-32x-24
-----------------------------
0
a-6=-32⇒a=-32+6=-26
b=-24
3x²- 5x - 2 = 0,
Д = (-5)² - 4*3*(-2) = 25 + 24 = 49 ⇒ 2 корня, так как Д >0,
4х² - 4х + 1 = 0,
Д = (-4)² - 4*4*1 = 16 - 16 = 0 ⇒ 1 корень, так как Д = 0,
х² - 2x +3 = 0,
Д = (-2)² - 4*1*3 = 4 - 12 = -8 ⇒ корней нет, так как Д < 0,
х² - 8х + 15 = 0,
Д = (-8)² - 4*1*15 = 64 - 60 = 4,
х1 = (8 + 2) / 2*1 = 10/2 = 5,
х2 = (8 - 2) / 2*1 = 6/2 = 3,
4х² - 40х + 25 = 0,
Д = (-40)² - 4*4*25 = 1600 - 400 = 1200, ( √1200 = √(3*400) = 20√3 ),
х1 = (40 + 20√3) / 2*4 = 5(2 + √3)/2,
х1 = (40 - 20√3) / 2*4 = 5(2 - √3)/2,
х² - х + 7 = 0,
Д = (-1) - 4*1*7 = 1 - 28 = -27 ⇒ корней нет (Д < 0)