Обозначим это число N и отнимем от него 8. Это число N - 8 делится на 135 нацело, а на 244 с остатком 51 - 8 = 43. N - 8 = 135*n = 244*m + 43 = (240m + 40) + (4m + 3) Число 135 делится на 5, то есть кончается на 5 или на 0. Составим таблицу чисел вида 4m + 3. m __ =_1, 2, 3, 4, 5, 6, 7, 8, 9, 0 4m+3 = 7, 1, 5, 9, 3, 7, 1, 5, 9, 3 Чтобы число вида 4m+3 делилось на 5, m должно кончаться на 3 или на 8. Кроме того, число 135 делится на 27. 244*m + 43 = (27*9+1)*m + 27 + 16 = 27*(9m + 1) + (m + 16) Если m + 16 кратно 27, то m = 11, 38, 65, ... Минимальное число m, которое кончается на 3 или 8, и при этом m + 16 кратно 27 - это число 38. m = 38; m + 16 = 54 = 2*27; 4m + 3 = 155 = 5*31 N - 8 = 244m + 43 = 9315 = 135*69; n = 69 N = 244m + 43 + 8 = 9315 + 8 = 9323 = 135*69+8 = 244*38+51 ответ: 9323
Это число N - 8 делится на 135 нацело, а на 244 с остатком 51 - 8 = 43.
N - 8 = 135*n = 244*m + 43 = (240m + 40) + (4m + 3)
Число 135 делится на 5, то есть кончается на 5 или на 0.
Составим таблицу чисел вида 4m + 3.
m __ =_1, 2, 3, 4, 5, 6, 7, 8, 9, 0
4m+3 = 7, 1, 5, 9, 3, 7, 1, 5, 9, 3
Чтобы число вида 4m+3 делилось на 5, m должно кончаться на 3 или на 8.
Кроме того, число 135 делится на 27.
244*m + 43 = (27*9+1)*m + 27 + 16 = 27*(9m + 1) + (m + 16)
Если m + 16 кратно 27, то m = 11, 38, 65, ...
Минимальное число m, которое кончается на 3 или 8, и при этом m + 16 кратно 27 - это число 38.
m = 38; m + 16 = 54 = 2*27; 4m + 3 = 155 = 5*31
N - 8 = 244m + 43 = 9315 = 135*69; n = 69
N = 244m + 43 + 8 = 9315 + 8 = 9323 = 135*69+8 = 244*38+51
ответ: 9323
х+у=3 з другого ривняння виразимо у через х
x²-4х+2у= -3
у=3-х пидстав. вираження замисть у в перше
ривняння и розв"яжемо його
x²-4х+2(3-х)= -3 розкриэмо дужки
x²-4х+6-2х+3=0 зведемо подибни доданки
x²-6х+9=0 згорнемо в квадрат ризници
(х-3)²=0 спростимо
х-3=0 отримаэмо значення икса
х=3 пидставимо в вираження игрека и знайдемо його
у=3-х=3-3=0.
Видповидь: система х=3
у=0.