ответ:Сумма логарифмов с одинаковыми основаниями равна логарифму произведения выражений, стоящих под знаком логарифма. logc a + logc b = logc (a + b), a > 0, b > 0. log2 ((x - 2)(x - 3)) = 1; О. Д. З. {х - 2 > 0, х - 3 > 0; х > 3. Применим определение логарифма: Логарифмом числа а по основанию с logc a = b, называется такое число b, что выполняется равенство а = с^b. (х - 2)(х - 3) = 2^1; х^2 - 3х - 2х + 6 = 2; х^2 - 5х + 6 - 2 = 0; х^2 - 5х + 4 = 0; D = b^2 - 4ac; D = (-5)^2 - 4 * 1 * 4 = 25 - 16 = 9; √D = 3; x = (-b ± √D)/(2a); x1 = (5 + 3)/2 = 4; x2 = (5 - 3)/2 = 1 - посторонний корень, т.к. не принадлежит О. Д. З. Объяснение: ОТВЕТ. 4. ЕСЛИ ЧТО ТО НЕ ТАК НЕ БЛАКИРУЙТЕ АККАУНТ
вот:
Объяснение:
1) Дана система уравнений, которую будем решать методом подстановки.
7х + 3у = 43;
4х - 3у = 67;
2) Выразим переменную 3у через х в первом выражении:
3у = 43 - 7х;
4х - 3у = 67;
3) Подставим переменную 3у во второе выражение:
4х - (43 - 7х) = 67;
4) Раскроем скобки:
4х - 43 + 7х = 67
5) Упорядочим уравнение:
11х = 110
6) Найдем х:
х = 110 / 11 = 10;
8) Найдем у, подставив найденную переменную х в любое из выражений:
70 + 3у = 43;
3у = -27;
у = -27 / 3 = -9.
ответ: переменная х = 10, переменная у = -9.