Объяснение:
Задача 1.
a1 = an - (n-1)*d = 59 - 3*n + 3 = 62 -3*n
Sn = (a1 + an)*(n/2) = 603
(62 - 3*n + 59)*n = 2*603 = 1206
(121 - 3*n)*n = 1206
- 3*n² + 121*n - 1206 = 0 a*x² + b*x + c = 0
Вычисляем дискриминант - D.
D = b² - 4*a*c = 121² - 4*(-3)*(-1206) = 169 - дискриминант. √D = 13.
Вычисляем корни уравнения.
n = (-b+√D)/(2*a) = (-121+13)/(2*-3) = -108/-6 = 18 - первый корень
x₂ = (-b-√D)/(2*a) = (-121-13)/(2*-3) = -134/-6 = 22,33 - второй корень -нет
n = 18 - число членов - ответ.
а1 = an - (n-1)*d = 59 - 17*3 = 59 - 51 = 8 - а1 -первый член- ответ
Проверено - правильно.
Задача 2.
a1 = an - (n-1)*d = -8 + 5*n -5 = -13 +5*n
Sn = (-13 + 5*n - 8)*n = 30*2 = 60
5*n² - 11*n - 60 = 0 - НЕ РЕШЕНО.
ЗАДАЧА 3.
а1 = an - (n-1)*d = 49 - (n-1)*2 = 51 - 2*n
Sn = (a1 + an)*(n/2) = 702
(51 - 2*n + 49)*n = 702*2
- 2*n² + 100*n - 1404 = 0 - не решено.
Задача 4.
а1 = an - (n-1)*d = -18 + 7*n -7 = 7*n - 25
Sn = (a1 + an)*(n/2) =
(7*n - 25 -18)*n = -20*2 = -40
7*n² - 43*n + 40 = 0
D = b² - 4*a*c = -43² - 4*(7)*(40) = 729 - дискриминант. √D = 27.
n₁ = (-b+√D)/(2*a) = (43+27)/(2*7) = 70/14 = 5 - первый корень
x₂ = (-b-√D)/(2*a) = (43-27)/(2*7) = 16/14 = 1,14 - второй корень - нет
n = 5 - число членов - ответ
а1 = -18 - 4*(-7) = -18 + 28 = 10 - первый член
6x(x^2-4)=0
6x(x-2)(x+2)=0
6x=0 или x-2=0 или x+2=0
x=0 x=2 x=-2
ответ:x=0
x=2
x=-2
б). 25x^3- 10x^2 +x =0
x(25x^2-10x+1)=0
x(5x-1)^2=0
x=0 или (5x-1)^2=0
5x-1=0
5x=1
x=1/5
ответ:x=0
x=1/5
в). 2x^4 + 6x^3 – 8x^2- 24x = 0
2x^2(x^2-4)+6x(x^2-4)=0
(2x^2+6x)(x^2-4)=0
2x(x-2)(x+2)(x+3)=0
2x=0 или x-2=0 или x+2=0 или x+3=0
x=0 x=2 x=-2 x=-3
ответ:x=0
x=2
x=-2
x=-3
Объяснение:
Задача 1.
a1 = an - (n-1)*d = 59 - 3*n + 3 = 62 -3*n
Sn = (a1 + an)*(n/2) = 603
(62 - 3*n + 59)*n = 2*603 = 1206
(121 - 3*n)*n = 1206
- 3*n² + 121*n - 1206 = 0 a*x² + b*x + c = 0
Вычисляем дискриминант - D.
D = b² - 4*a*c = 121² - 4*(-3)*(-1206) = 169 - дискриминант. √D = 13.
Вычисляем корни уравнения.
n = (-b+√D)/(2*a) = (-121+13)/(2*-3) = -108/-6 = 18 - первый корень
x₂ = (-b-√D)/(2*a) = (-121-13)/(2*-3) = -134/-6 = 22,33 - второй корень -нет
n = 18 - число членов - ответ.
а1 = an - (n-1)*d = 59 - 17*3 = 59 - 51 = 8 - а1 -первый член- ответ
Проверено - правильно.
Задача 2.
a1 = an - (n-1)*d = -8 + 5*n -5 = -13 +5*n
Sn = (-13 + 5*n - 8)*n = 30*2 = 60
5*n² - 11*n - 60 = 0 - НЕ РЕШЕНО.
ЗАДАЧА 3.
а1 = an - (n-1)*d = 49 - (n-1)*2 = 51 - 2*n
Sn = (a1 + an)*(n/2) = 702
(51 - 2*n + 49)*n = 702*2
- 2*n² + 100*n - 1404 = 0 - не решено.
Задача 4.
а1 = an - (n-1)*d = -18 + 7*n -7 = 7*n - 25
Sn = (a1 + an)*(n/2) =
(7*n - 25 -18)*n = -20*2 = -40
7*n² - 43*n + 40 = 0
D = b² - 4*a*c = -43² - 4*(7)*(40) = 729 - дискриминант. √D = 27.
Вычисляем корни уравнения.
n₁ = (-b+√D)/(2*a) = (43+27)/(2*7) = 70/14 = 5 - первый корень
x₂ = (-b-√D)/(2*a) = (43-27)/(2*7) = 16/14 = 1,14 - второй корень - нет
n = 5 - число членов - ответ
а1 = -18 - 4*(-7) = -18 + 28 = 10 - первый член
Проверено - правильно.