1) запишем данное выражение в десятичных дробях: (6,5-4,25):2,5=2,25:2,5=0,9. 2) В уравнении смешанные дроби превратим в неправильные: 45/7:13/7=9/2:y ⇒ y=13×(9/2):45=13/10. 3)Обозначим через х количество десятков в двузначном числе, а через у - число единицю Тогда, учитывая условие задачи получим систему двух уравнений с двумя неизвестными: х+у=13 х-3=у Решая эту систему, получим: х=8, у=5, следовательно, искомое число 85. 4) Так как 21 км составляет 15% пути, весь путь найдем следующим образом: 21×100/15=140 (км). Теперь легко найти путь, пройденный во второй день: 140:7×2=40 (км)
(6,5-4,25):2,5=2,25:2,5=0,9.
2) В уравнении смешанные дроби превратим в неправильные:
45/7:13/7=9/2:y ⇒ y=13×(9/2):45=13/10.
3)Обозначим через х количество десятков в двузначном числе, а через у - число единицю Тогда, учитывая условие задачи получим систему двух уравнений с двумя неизвестными:
х+у=13
х-3=у
Решая эту систему, получим: х=8, у=5, следовательно, искомое число 85.
4) Так как 21 км составляет 15% пути, весь путь найдем следующим образом: 21×100/15=140 (км). Теперь легко найти путь, пройденный во второй день: 140:7×2=40 (км)
25 км/ч скорость лодки в неподвижной воде.
Объяснение:
Плот плывет со скоростью течения реки , следовательно:
30 : 5 = 6 ч . - время , которое он затратил
6-1 = 5 ч. - затратила лодка на путь туда-обратно
Лодка:
Собственная скорость - х км/ч
По течению:
Скорость - (х+5) км/ч
Расстояние - 60 км
Время - 60 /(х+5) ч.
Против течения :
Скорость - (х-5) км/ч
Расстояние - 60 км
Время - 60/(х-5) ч.
Уравнение.
60/(х+5) + 60/(х-5) = 5
(60(х-5) +60(х+5) ) / (х²-25) = 5 * (х²-25)
60х - 300 +60х +300 = 5(х²-25)
120 х = 5х²-125
120х -5х² + 125 =0 ÷(- 5)
х²-24х- 25=0
D= (-24)² - 4 *(-25) = 576+100=676
D > 0 - два корня
х₁= (24-√676) /2 = (24-26)/2 = -2/2=-1 - не удовл. условию задачи
х₂= (24+26 )/2= 50/2 =25 - собственная скорость лодки