Не существует. b= так как k не удовлетворяет, то и kx тоже. Не существует.
Асимптот нет.
6)Исследование на монотонность функции и экстремумы:
x=0 - критическая точка. При x<0, f`(x)>0; ⇒ f(x) возрастает; При x>0 f`(x)>0; ⇒ f(x) возрастает; Так как знак при переходе через критическую точку не меняется, она не является точкой экстремума. Монотонно возрастает.
7)Исследование на выпуклость-вогнутость:
x=0 - точка перегиба. При x<0, f(x)<0; ⇒ Выпуклая. При x>0, f(x)>0; ⇒ Вогнутая.
1)Область определения функции: D(x)∈R;
2)Область значений функции: E(y)∈R;
3)Исследование на четность-нечетность:
Функция нечетная.
4)Точек разрыва нет.
5)Нахождения уравнений асимптот:
y=kx+b;
k=
Не существует.
b= так как k не удовлетворяет, то и kx тоже. Не существует.
Асимптот нет.
6)Исследование на монотонность функции и экстремумы:
x=0 - критическая точка.
При x<0, f`(x)>0; ⇒ f(x) возрастает;
При x>0 f`(x)>0; ⇒ f(x) возрастает;
Так как знак при переходе через критическую точку не меняется, она не является точкой экстремума.
Монотонно возрастает.
7)Исследование на выпуклость-вогнутость:
x=0 - точка перегиба.
При x<0, f(x)<0; ⇒ Выпуклая.
При x>0, f(x)>0; ⇒ Вогнутая.
8)Нули функции:
9)График во вложении!!
1.
а) (2h-3)^2=4h^2-12h+9 (квадрат разности)
б) (x+5y)^2=x^2+10xy+25y^2 (квадрат суммы)
в) (2/3 a-b)(2/3a+b)=4/9 a^2-b^2 (разность квадратов)
2.
а) (r+2)(r-5)-(r+4)^2=r^2-5r+2r-10-r^2-8r-16= -11 r - 26 (квадрат суммы)
б) 3(a+2b)^2-12ab=3a^2+12ab+12b^2-12ab=3a^2+12b^2 (квадрат суммы)
в) (m-1)(m^2+m+1)-m^3=m^3-1-m^3=-1 (разность кубов)
3.
(18a^5-6*a^4*b)/6a^3=6a^3(3a^2-ab)/6a^3=3a^2-ab=3*25-5*(-10)=75+50=125 (вынесение общего множителя за скобки)
4.
Пусть a-1, a, a+1 - три последовательных натуральных числа.
(a-1)^2+41=a(a+1)
a^2-2a+1+41=a^2+a
3a=42
a=14
14-1=13
14+1=15
ответ: 13, 14, 15.