1) Раскрыть скобки: x^4-10x^3+35x^2-50x+24=0 2) Рассмотреть все числа на которые может делиться число 24. Это: 1,2,3,4,6,8,12,24 После проверки каждого числа подходит только 1. 1^4−10×1^3+35×1^2−50×1+24=0 60-60=0 3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1) => (x^3−9x^2+26x−24)(x−1)=0 4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0 В данном случае ответ будет (х-2) 5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0 6) Дальше я уже думаю Вы сами знаете как решать. 7) ответ: (x−4)(x−3)(x−2)(x−1)=0 х=1,2,3,4.
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z
x^4-10x^3+35x^2-50x+24=0
2) Рассмотреть все числа на которые может делиться число 24.
Это: 1,2,3,4,6,8,12,24
После проверки каждого числа подходит только 1.
1^4−10×1^3+35×1^2−50×1+24=0
60-60=0
3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1)
=> (x^3−9x^2+26x−24)(x−1)=0
4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0
В данном случае ответ будет (х-2)
5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0
6) Дальше я уже думаю Вы сами знаете как решать.
7) ответ: (x−4)(x−3)(x−2)(x−1)=0
х=1,2,3,4.