Сор по алгебре 7класс очень
Дескриптор
задание 1:
-использует вынесение общего множетеля;
-использует ФСУ для разложения на множетели;
-сокращает дроби;
Задание 2:
-устанавливает 1 соответсвие;
-устанавливает 2 соответсвие;
-устанавливает 3 соответсвие;
Задание 3:
-использует ФСУ для разложения на множители;
-выносит общий множитель за скобки;
-выполняет деление выражений;
-находит значение выражения;
всего сейчас 12:10 надо решить все задания до 18:00
Я ЗАДАНИЕ 1 УЖЕ РЕШИЛ, НАДО ЗАДАНИЕ 2 И ЗАДАНИЕ 3 РЕШИТЬ!
3.а)если х=2,то у=4•2+5=13
б)если х=6,то у=4•6+5=29
4.
а)-6=-5х+4 б)19=-5х+4
-6-4=-5х 19-4=-5х
-10=-5х 15=-5х
х=2 х=-3
5.у=2х+b
(-3(x);5(y))
5=2•(-3)+b
5=-6+b
5+6=b
b=11
ответ:4)11Часть 21.Смотрите прикрепленный файл
2.у=-2х+3
А(3(x);9(y))
-2•3+3≠9
-3≠9
ответ:точка А не принадлежит графику у=-2х+3B(4(x);-5(y))
-2•4+3=-5
-5=-5
ответ:точка B принадлежит графику у=-2х+33.А)нету фотографии графика
B)Смотрите прикрепленный файл
4.
у=5-2х и у=3х-5
5-2х=3х-5
-2х-3х=-5-5
-5х=-10
х=2
у=5-2•2=1
ответ:(2;1)Графическим см.прикрепленный файлЗа такое вряд ли кто-то решит. Предлагаю переделать мое решение этой же задачи (но с чуть-чуть другими цифрами).
Задумано несколько (необязательно различных) натуральных цифр. Эти числа и все из возможные суммы (по 2, 3 и тд) выписывают на дочку в порядке не убывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на лоске остается одно такое число n, а остальные числа, равные n, стираются. Например, даны числа 1,3,3,4, то на доске будет 1,3,4,5,6,7,8,10,11.
А) приведите пример таких чисел, для которых на доске будет написан набор 2,4,6,8
Б) существует ли пример таких чисел, доя которых написан набор 1,3,4,5,6,9,10,11,12,13,14,17,18,19,20,22
В) приведите пример всех задуманных чисел, для которых на доске будет написан набор 9,10,11,19,20,21,22,30,31,32,33,41,42,43,52
РЕШЕНИЕ.
а) 2,2,4
б) нет. Наименьшее из написанных чисел - наименьшее из загаданных чисел; наибольшее - сумма загаданных чисел. Так, среди загаданных чисел есть 1, а сумма всех чисел равна 22. Но сумма всех чисел без единицы 22-1=21 не выписана.
в) Сумма чисел 52. Наименьшее число равно 9. 10, 11 - также загаданные числа (это не может быть суммой 9 и какого-то числа, не меньшего 9).
19 = 10 + 9; 43 = 52 - 9
20 = 11 + 9; 42 = 52 - 10
21 = 10 + 11; 41 = 52 - 11
22 = ? 33 = 52 - 10 - 9
30 = 52 - 22; 32 = 52 - 11 - 9
31 = 52 - 10 - 11
Рассмотрим случаи.
а) Число 22 среди загаданных. Тогда 30=52-22, загаданные числа 9, 10, 11, 22 - их сумма 52, и все "частичные суммы" выписаны.
б) Число 22 не среди загаданных. Тогда 22 - какая-то сумма составленная из чисел 9, 10, 11 (взятыми произвольное (возможно, нулевое) число раз).
9 не может входить в эту сумму (22-9=13 невозможно получить сложением этих чисел).
Аналогично, 10 не входит в эту сумму. Итак, 22 = 11 + 11 и 11 взято как минимум 2 раза.
Уже известные числа: 9, 10, 11, 11 - сумма 41. Оставшееся число равно 52-41=11. Легко проверить, что этот набор чисел также удовлетворяет условию.
ответ.
а) 2,2,4
б) нет
в) {9, 10, 11, 22} или {9, 10, 11, 11, 11}