В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
314159026
314159026
21.03.2021 14:23 •  Алгебра

Составь квадратное уравнение, корнями которого являются числа x1=−9; x2=−12, при этом коэффициент a=1. ответ: x2+__x+__=0.

Показать ответ
Ответ:
meruert2001n1
meruert2001n1
14.01.2022 15:22

Відповідь:

1. Щоб звільнитися від ірраціональності в знаменнику дробу 2/(5√8), ми можемо помножити і чисельник, і знаменник на √8:

2/(5√8) = (2√8)/(5√8 * √8) = (2√8)/(5 * 8) = (2√8)/40 = √8/20

Отже, після спрощення, отримуємо дріб √8/20.

2. Щоб звільнитися від ірраціональності в знаменнику дробу 6/(√10 - 2), ми можемо використати метод множників спільного знаменника. Множимо чисельник і знаменник на спряжений вираз до √10 - 2, тобто √10 + 2:

6/(√10 - 2) = 6(√10 + 2)/((√10 - 2)(√10 + 2))

= 6(√10 + 2)/(√10^2 - 2^2)

= 6(√10 + 2)/(10 - 4)

= 6(√10 + 2)/6

= √10 + 2

Отже, після спрощення, отримуємо дріб √10 + 2.

0,0(0 оценок)
Ответ:
sergiykorolkov8
sergiykorolkov8
22.08.2022 08:02

а) Для решения уравнения 4x^2 + |y| = x^2, мы можем рассмотреть два случая, в зависимости от знака y.

1. Если y ≥ 0, тогда |y| = y, и уравнение принимает вид:

4x^2 + y = x^2

Перенесем все переменные на одну сторону уравнения:

3x^2 + y = 0

2. Если y < 0, тогда |y| = -y, и уравнение принимает вид:

4x^2 - y = x^2

Перенесем все переменные на одну сторону уравнения:

3x^2 - y = 0

Таким образом, уравнение имеет два варианта решений:

1) 3x^2 + y = 0 при y ≥ 0

2) 3x^2 - y = 0 при y < 0

б) Для решения уравнения |x - 2| - y/4 = |3x - 6|, мы также рассмотрим несколько случаев.

1. Если (x - 2) ≥ 0 и (3x - 6) ≥ 0, то уравнение принимает вид:

(x - 2) - y/4 = 3x - 6

Перенесем все переменные на одну сторону уравнения:

x - 3x = 2 - 6 + y/4

-2x = -4 + y/4

-8x = -16 + y

y = -8x + 16

2. Если (x - 2) ≥ 0 и (3x - 6) < 0, то уравнение принимает вид:

(x - 2) - y/4 = -(3x - 6)

Перенесем все переменные на одну сторону уравнения:

x - 3x = 2 + y/4 - 6

-2x = -4 + y/4

-8x = -16 + y

y = -8x + 16

3. Если (x - 2) < 0 и (3x - 6) ≥ 0, то уравнение принимает вид:

-(x - 2) - y/4 = 3x - 6

Перенесем все переменные на одну сторону уравнения:

- x + 2 - y/4 = 3x - 6

-4x + 8 - y = 12x - 24

-16x = -y + 16

y = 16x + 16

4. Если (x - 2) < 0 и (3x - 6) < 0, то уравнение принимает вид:

-(x - 2) - y/4 = -(3x - 6)

Перенесем все переменные на одну сторону уравнения:

- x + 2 - y/4 = -3x + 6

-4x + 8 - y = -12x + 24

8x = y + 16

y = 8x - 16

Таким образом, уравнение имеет несколько вариантов решений в зависимости от знаков и значения переменных x и y.

в) Для решения уравнения 10x - |y| = x^2 + 25, мы рассмотрим два случая, в зависимости от знака y.

1. Если y ≥ 0, то уравнение принимает вид:

10x - y = x^2 + 25

Перенесем все переменные на одну сторону уравнения:

x^2 - 10x + y - 25 = 0

2. Если y < 0, то уравнение принимает вид:

10x + y = x^2 + 25

Перенесем все переменные на одну сторону уравнения:

x^2 - 10x - y + 25 = 0

Таким образом, уравнение имеет два варианта решений:

1) x^2 - 10x + y - 25 = 0 при y ≥ 0

2) x^2 - 10x - y + 25 = 0 при y < 0

г) Для решения уравнения |y + 4| + |3x + 2| = 0, мы рассмотрим несколько случаев.

1. Если (y + 4) ≥ 0 и (3x + 2) ≥ 0, то уравнение принимает вид:

(y + 4) + (3x + 2) = 0

Перенесем все переменные на одну сторону уравнения:

y + 3x = -6

2. Если (y + 4) ≥ 0 и (3x + 2) < 0, то уравнение принимает вид:

(y + 4) - (3x + 2) = 0

Перенесем все переменные на одну сторону уравнения:

y - 3x = -2

3. Если (y + 4) < 0 и (3x + 2) ≥ 0, то уравнение принимает вид:

-(y + 4) + (3x + 2) = 0

Перенесем все переменные на одну сторону уравнения:

- y + 3x = -6

4. Если (y + 4) < 0 и (3x + 2) < 0, то уравнение принимает вид:

-(y + 4) - (3x + 2) = 0

Перенесем все переменные на одну сторону уравнения:

- y - 3x = -6

Таким образом, уравнение имеет несколько вариантов решений в зависимости от знаков и значения переменных x и y.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота