Составь словесную модель по математической: {y−x=525xy=14
Число учащихся одной школы относится к числу учащихся другой школы как : . Сколько учащихся в каждой из этих школ, если число учащихся второй школы 525 числа учащихся первой школы? ответить!
С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
тогда стоимость одной акции = 110000 / х (р.)
110000 / (х-20) = (110000 / х) + 50
110000 / (х-20) - (110000 / х) = 50
110000 * (1 / (х-20) - 1 / х) = 50
(х-х+20) / (х(х-20)) = 5 / 11000
х(х-20) = 44000
х² - 20х - 44000 = 0 44000 = 440 * 100 = 220 * 200
по т.Виета корни (220) и (-200)
ответ: предприниматель приобрел 220 акций.
ПРОВЕРКА:
стоимость одной акции = 110000 / 220 = 1000 / 2 = 500 (р.)
стоимость одной акции через год = 550 (р.)
110000 / 550 = 1000 / 5 = 200 акций ---это на 20 акций меньше))
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10