Составь уравнения и найди число, Отличное от нуля, которое меньше своего квадрата в 3 раза. Выбери правильные варианты решения задачи. Верных ответов: 2 12 - х - 3=0 - xx – 3) = 0 х2 = 3 3х2 – х = 0 -
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
Пусть концентрация первого раствора х%, а второго у%. В первом растворе содержится 12х/100 кг кислоты, а во втором 8у/100 кг. Если их слить, то в полученном растворе окажется 12х/100+8у/100 кг. С другой строны мы получим 12+8=20 кг 65% раствора. В нем 20*65/100=13 кг кислоты. Получаем уравнение 12х/100+8у/100 =13 12х+8у=1300 Теперь будем сливать одинаковые массы растворов, например по 1 кг. В первом растворе окажется х/100 кг кислоты, во втором у/100 кг. В итоговом растворе будет 2*60/100=1,2кг Получаем уравнение х/100+у/100=1,2 х+у=120 Итак мы получили систему уравнений 12х+8у=1300 х+у=120 Решаем х=120-у 12(120-у)+8у=1300 1440-12у+8у=1300 12у-8у=1440-1300 4у=140 у=35% Во втором растворе содежится 8*35/100=2,8 кг кислоты
V(5x+7) - V(x+4) =4x+3
ОДЗ:
{5x+7>=0
{x+4>=0
{5x>= -7
{x>= -4
{x>=-7/5
{x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4
У нас получилась следующая ОДЗ:
{x>= -7/5
{x>= -4
{x>= -3/4
Решением этой системы будет промежуток: [-3/4; + бесконечность)
Итак, возводим в квадрат:
(5x+7)^2 - (x+4)^2 = (4x+3)^2
25x^2+70x+49-x^2-8x-16=16x^2+24x+9
24x^2+62x+33= 16x^2+24x+9
24x^2+62x+33-16x^2-24x-9=0
8x^2+38x+24=0 |:2
4x^2+19x+12=0
D= 19^2-4*4*12=169
x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.)
x2=(-19+13)/8= -3/4
Получается, что уравнение имеет один корень => k=1
Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4
Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2
ответ:2
В первом растворе содержится 12х/100 кг кислоты, а во втором 8у/100 кг.
Если их слить, то в полученном растворе окажется 12х/100+8у/100 кг.
С другой строны мы получим 12+8=20 кг 65% раствора. В нем 20*65/100=13 кг кислоты. Получаем уравнение
12х/100+8у/100 =13
12х+8у=1300
Теперь будем сливать одинаковые массы растворов, например по 1 кг.
В первом растворе окажется х/100 кг кислоты, во втором у/100 кг.
В итоговом растворе будет 2*60/100=1,2кг
Получаем уравнение
х/100+у/100=1,2
х+у=120
Итак мы получили систему уравнений
12х+8у=1300
х+у=120
Решаем
х=120-у
12(120-у)+8у=1300
1440-12у+8у=1300
12у-8у=1440-1300
4у=140
у=35%
Во втором растворе содежится 8*35/100=2,8 кг кислоты