Составить таблицу распределения по частотам м значений случайной величины х- циффр , встречающихся на ценниках товаров некоторого киоска: 73,102,225,30,44,68,76,5,90,119 86,24,37,207,8,45,51,13,201,69
Решить систему уравнений графически это значит найти точку пересечения графиков этих функций (если она существует) и определить координаты этой точки пересечения, значения х и у , это и будет решение системы. Если точки пересечения нет, значит, система не имеет решения.
Построить графики. Уравнения линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем значение у, записываем в таблицу.
Для построения прямой достаточно двух точек, для точности определим три:
y=2х/3−2 y= −x+3
х -3 0 3 х -1 0 1
у -4 -2 0 у 4 3 2
Строим графики и определяем координаты точки пересечения.
Координаты точки пересечения можно вычислить. Для определения значения х приравняем правые части уравнений (левые равны) и вычислим значение х:
2х/3−2 = −x+3
Для избавления от дробного выражения умножим обе части уравнения на 3 (каждый член):
2х-6= -3х+9
2х+3х=9+6
5х=15
х=3
Теперь подставим найденное значение х в любое из двух данных уравнений и вычислим значение у:
у=(2*3)/3-2=2-2=0
у= -3+3=0
Координаты точки пересечения графиков функций (3; 0)
Объяснение:
составим систему уравнений
b(5)-b(3)=1200 (1)
b(5)-b(4)=1000 (2) ⇒ b(5)= 1000+b(4) (2_2)
Добавим в систему третье уравнение b(4)²=b(5)*b(3) (3)
вычтем из уравнения (1)-(2) ⇒ b(4)-b(3)=200 ⇒ b(3)=b(4)-200 (4)
Подставим (2_2) в (3)
b(4)²=(1000+b(4))*b(3) Подставим вместо b(3) уравнение (4)
b(4)²=(1000+b(4))*(b(4)-200)
b(4)²==1000b(4)+b(4)²-200000-200b(4) [b(4)² сократим]
800 b(4)=200000 b(4)=250
b(3)=250-200=50 b(3)=50
q=b(4)/b(3)=250/50=5 q=5
b(3)=b(1)*q² ⇒ b(1)=50/25=2 b(1)=2
S(5)= b(1)(q^n-1)/(q-1)
S(5)=3125
х=3
у=0 решение системы.
Объяснение:
Решить систему уравнений графически это значит найти точку пересечения графиков этих функций (если она существует) и определить координаты этой точки пересечения, значения х и у , это и будет решение системы. Если точки пересечения нет, значит, система не имеет решения.
Построить графики. Уравнения линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем значение у, записываем в таблицу.
Для построения прямой достаточно двух точек, для точности определим три:
y=2х/3−2 y= −x+3
х -3 0 3 х -1 0 1
у -4 -2 0 у 4 3 2
Строим графики и определяем координаты точки пересечения.
Координаты точки пересечения можно вычислить. Для определения значения х приравняем правые части уравнений (левые равны) и вычислим значение х:
2х/3−2 = −x+3
Для избавления от дробного выражения умножим обе части уравнения на 3 (каждый член):
2х-6= -3х+9
2х+3х=9+6
5х=15
х=3
Теперь подставим найденное значение х в любое из двух данных уравнений и вычислим значение у:
у=(2*3)/3-2=2-2=0
у= -3+3=0
Координаты точки пересечения графиков функций (3; 0)
х=3
у=0, это решение системы.